$\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석

Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites

  • 정성욱 (포항공과대학교 기계공학과 대학원) ;
  • 남현욱 (포항공과대학교 기계공학과 대학원) ;
  • 정창규 (포항공과대학교 기계공학과 대학원) ;
  • 한경섭 (포항공과대학교 기계공학과)
  • 발행 : 2003.02.01

초록

본 연구는 보강재의 부피분율이 49%, 56%, 63%첨가된 패키징용 SiC/Al복합재료를 가압주조법을 통해 개발하였다. SiC/Al복합재료는 0.8%의 무기성형제와 $Al_2$O$_3$섬유가 SiC입자에 비해 부피비 1:10의 비율로 첨가되었으며 새로이 고안된 몰드에서 제조되었다. 제조된 SiC/Al복합재료에 대해 30-300 구간에서 열팽창 계수를 측정하고, FEM수치해석과 비교하여 온도에 따른 특성을 분석하였다. 실험결과 SiC/Al복한재료의 열팽창계수는 혼합법칙, Turner모델의 중간값을 가졌으며 상온에서는 Turner모델에 가깝다가 온도가 높아질수록 혼합법칙에 가까와졌다. 이러한 특성은 모재의 소성변형 및 잔류응력에 의한 것으로 본 연구에서 제안한 모재와 보강재 사이에 작용하는 평균응력 차이로부터 분석이 된다. 해석결파 모재의 소성변형이 시작되는 온도에서 SiC/Al복합재료의 열팽창계수가 급격히 증가하였으며, 가공 잔류응력은 이러한 소성변형의 시작온도를 고온으로 이동시킴으로써 열팽창계수에 영향을 끼침을 밝혔다. 이러한 일련의 연구를 통해 온도에 따른 열팽창 특성은 복수입자모델에 의한 2차인 해석을 통해 성공적으로 분석됨을 보였다.

This study developed SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt. % of the inorganic binder as well as the A1$_2$O$_3$ fiber and SiC Particles with the volume fraction of 1:10 were added to the composites, which were produced in the newly designed mold. For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to 300 and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study.

키워드

참고문헌

  1. Comprehensive Composite Materials v.3 Clyne, T.W.
  2. Materials for Electronic Packaging Deborah D.L. Chung
  3. Proceeding of the 4th Annual Portable by Design Conference A new substarate for electronic packaging: aluminum-silicon carbide(AISic) composites Occhionero, M.;Adams, R.;Fennessy, K.
  4. Materials Science and Technology v.16 no.7-8 Development of light composite materials with low coefficients of thermal expansion Smagorinski, M.E.;Tsantrizos, P.G. https://doi.org/10.1179/026708300101508568
  5. Metallurgical and Materials Transactions v.31A Thermal expansion behavior of silver matrix composites Shou-Yi Chang;Su-Jien Lin;Merton C. Flemings
  6. Materials Chemistry and Physics v.72 Effects of thermal processing on thermal expansion Coefficient of a 50 Vol. % SiCp /Al composite Byung G. Kim;D. L. Dong;Su D. Park https://doi.org/10.1016/S0254-0584(01)00306-6
  7. Journal of Materials Science v.32 no.8 Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites Elomari, S.;Boukhili, R.;San Marchi, C.;Mortensen, A.;Lloyd, D.J. https://doi.org/10.1023/A:1018535108269
  8. Metallurgical and Materials Transactions A v.25A Coeffcients of Thermal expansion of metal-matrix composites for electronic packaging Shen, Y.L.;Needleman, A.;Suresh, S.
  9. Materials Science and Engineering v.A252 Thermal expansion of metal-ceramic composites: a three-dimensional analysis Shen, Y.L.
  10. Journal of Materials Science v.36 no.1 Analyses of thermal expansion behavior of intergranular two-phase composites Hsueh, C.H.;Becher, P.F.;Sun, E.Y. https://doi.org/10.1023/A:1004890415316
  11. Materials Science and Engineering A v.313 no.1-2;31 FE investigation of the effect of particle distribution on the uniaxial stress-strain behaviour of particulate reinforced metal-matrix composites Borbely, A.;Biermann, H.;Hartmann, O. https://doi.org/10.1016/S0921-5093(01)01144-3
  12. Polymer Composites v.14 Preform permeability prediction by self-consistent method and finite element simulation Berdichevsky, A.L.;Cai, Z. https://doi.org/10.1002/pc.750140207
  13. Journal of Materials Science v.31 Squeeze Casting Conditions of AI/AI203 Metal Matrix Composites with Variations of Preform Drying Process Song, J.I.;Han, K.S. https://doi.org/10.1007/BF00687291
  14. Proceedings of Physics Society The Elastic and Thermo-Elastic Properties of Composite Media Kerner, E.H.
  15. Journal of Composite Materials v.2 Thermal Expansion Coefficients of Composite Materials Based on Energy Principles Schapery https://doi.org/10.1177/002199836800200308
  16. Metals Handbook(9th ed.) v.2 ASM Handbook Committee
  17. Acta Metallurgica v.44 no.5 Thermal expansion studied of prestrained AI203/AI metal matrix composites S.Elomari;R.Boukhili;D. J. LLoyd
  18. Journal of Materials Science v.35 Fabrication process and thermal properties of $SiC_p$/AI-Si metal matrix composites for electronic packaging applications Lee, H.S.;Jeon, K.Y.;Kim, H.Y.;Hong, S.H. https://doi.org/10.1023/A:1026749831726
  19. Metallurgical and Materials Transactions A v.29A no.7 Dependence of Thermal Residual Stress on Temperature in a SiC Particle-Reinforced 6061AI Alloy H. Li;J. B. Li;Z. G. Wang;C. R. Chen;D. Z. Wang
  20. Materials Science & Engineering A v.A278 no.1-2 Finite element analysis about effects of particle morphology on mechanical response of composites Chen, C.R.;Qin, S.Y.;Li, S.X.;Wen, J.L.
  21. Journal of Materials Science Letter v.17 Study on temperature dependence of thermal expansion behavior of SiCw/AI composite by internal stress analysis Geng, L.;Ochiai, S.;Yao, C.K. https://doi.org/10.1023/A:1006660510785