Absorbance Spectrum for Mesodinium rubrum MR-MAL01, a marine photosynthetic ciliate, fed on Photo-adapted Cryptophyte

광적응된 은편모조류를 섭식한 해양 광합성 섬모류 Mesodinium rubrum MR-MAL01의 흡광스펙트럼

  • Published : 2003.02.01

Abstract

Recent reports on the phagotrophic feeding of M. rubrum are based on cultivation experiments with novel isolates of this ciliate species from Gomso Bay, Korea. Photo-adapted cryptophyte(CR-MAL01) cultures at high light of 100 $\mu$mol photons m$^{-2}$ s$^{-1}$ (HL) and low light of 10 $\mu$mol photons m$^{-2}$ s$^{-1}$ (LL) were fed to M. rubrum (MR-MAL01) cultures under HL and LL conditions, respectively. Absorbance spectrum by LL M. rubrum showed the same peak at wavelengths around 542nm as that by LL cryptophyte prey, which was not showed in HL M. rubrum. This result supports the implication that light utilization and absorption pattern of M. rubrum population must depend on the status of photo-adaptation of the co-existing population of prey cryptophyte. Consequences of the present research results were discussed in relation to the function of the prey cryptophyte and phagotrophic M. rubrum in marine microbial ecosystem.

한국 서해의 곰소만에서 분리한 온대 해역 산 초유의 M. rubrum MR-MAL01 배양체가 확보되어, M. rubrum의 입자성 먹이 섭식 현상이 보고되었다. 100$\mu$mo1 photons m$^{-2}$ s$^{-1}$의 고광도(HL) 및 10 $\mu$mo1 photons m$^{-2}$ s$^{-1}$의 저광도(LL)에서 광 적응된 미동정 은편모조류 종주 CR-MAL01를 섭식한 M. rubrum의 HL및 LL적응 배양체의 흡광스펙트림을 분석하였다. LL에 적응된 은편모조류를 섭식하고 LL에 적응한 M. rubrum은 섭식 이전의 먹이 세포 흡광특성인 542nm부근의 황갈색 파장 범위에서 뚜렷한 흡광피크를 나타낸 반면, HL에 적응된 은편모조류를 섭식하고 HL에 적응한 M. rubrum은 이러한 흡광 피크를 보이지 않았다. 이는 M. rubrum세포가 자연환경에서 먹이로서 은편모조류 세포를 섭식하기 이전 이들의 광 적응 상태가 섭식 이후 M. rubrum의 광이용 효율 및 광흡수 특성 등을 결정짓는 주요 요인이 될 가능성을 시사한다. 본 연구 결과에 따라 예상되는 해양 미소생물 생태계 내에서 이들 섭식자 및 먹이생물 종의 역할에 대하여 논의하였다.

Keywords

References

  1. 한국 연안의 적조 국립수산진흥원
  2. 박사학위논문, 군산대학교 서해연안 광영양 섬모류 Mesodinium rubrum의 개체군 동태 및 지속성장 조건 김형섭
  3. 한국조류학회지 v.13 적조원인종 섬모충류 Mesodinium rubrum(Lohmann) Hamburger et Buddenbrock에 관하여
  4. 제주대 해양연보 v.15 제주도 연안해역에 출현하는 적조생물 윤양호
  5. J. Protozool v.20 Ultrastructure of the marine cryptomonad Chroomonas salina cultured under conditions of photoautotrophy and glycerol-heterotrophy Antia, N.J.;J.P. Kalley; J. McDonald;T. Bisalputra https://doi.org/10.1111/j.1550-7408.1973.tb00906.x
  6. J. Phycol v.5 Evidence for a cryptomonad symbiont in the ciliate Cyclotrichium meunieri Barber, R.T.;A.W. White;H.W. Siegelman https://doi.org/10.1111/j.1529-8817.1969.tb02583.x
  7. Mar. Ecol. Prog. Ser. v.36 Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater Boersheim, K.Y.;G. Bratbak https://doi.org/10.3354/meps036171
  8. J. Shellfish Res. v.15 Red-coloured digestive glands in cultured mussels and scallops: the implication of Mesodinium rubrum Carver, C.E.;A.L. Mallet;R. Warnock;D. Douglas
  9. Mar. Ecol. Prog. Ser. v.58 Mesodinium rubrum: The phytoplankter that wasn't Crawford, D.W. https://doi.org/10.3354/meps058161
  10. J. Mar. Biol. Assoc. U.K. v.73 Some observations on morphological variation in the red-water ciliate Mesodinium rubrum Crawford, D.W. https://doi.org/10.1017/S002531540003486X
  11. Estur. Coast. Shelf Sci. v.45 Recurrent red-tides in the Southampton water estuary caused by the phototrophic ciliate Mesodinium rubrum Crawford, D.W.;D.A. Purdie;A.P. Lockwood;P. Weissman https://doi.org/10.1006/ecss.1997.0242
  12. Biologia Morya v.1985 Polar lipids and fatty acids of the infusorian Mesodinium rubrum from a "red tide" in Avacha Bay (Kamchatka) Dikarev, V.P.
  13. Nature v.350 Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes Douglas, S.E.;C.A. Murphy;D.F. Spencer;M.W. Gray https://doi.org/10.1038/350148a0
  14. Mol. Evol. v.48 The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae Douglas, S. E.;S.L. Penny https://doi.org/10.1007/PL00006462
  15. Harmful Algae v.1 Growth responses of the mixotrophic dinoflagellates, Cryptoperidiniopsis sp. and pfiesteria piscicida, to light under prey saturated conditions Eriksen, N.T.;K.C. Hayes;A.J. Lewitus https://doi.org/10.1016/S1568-9883(02)00011-2
  16. J. Phycol v.9 Effect of light intensity and glycerol on the growth, pigment composition and ultrastructure of Chroomonas Faust M.A.;E, Gantt
  17. Plant Syst. Evol. v.11 no.SUP. The evolution of cryptophytes Fraunholz, M.J.;J. Wastl;S. Zauner;S.A. Rensing;M.M. Scherzinger;U.-G. Maier https://doi.org/10.1007/978-3-7091-6542-3_9
  18. Phytoflagellates Photosynthetic cryptophytes Gantt, E.;Cox E.R.(ed)
  19. Protistologica v.18 Quelaques precisions sur lultrastructure et la position systematique du cilie Mesodinium rubrum, et sut la constitution de ses symbiontes chloroplastiques Grain, J.;P. Puytorac;C.A. Groliere
  20. Handbook of phycological methods Methods for microflagellates and nanoplankton Guillard, R.R.L.;Stein J.R.(ed)
  21. Nature v.405 Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium https://doi.org/10.1038/35016570
  22. Maritimes v.35 Narrow River phytoplankton Hargraves, P.
  23. J. Mar. Biol. Assoc. U.K. v.57 Ultrastructure of the cryptomonad endosymbiont of the red-water ciliate Mesodinium rubrum Hibberd, D.J. https://doi.org/10.1017/S0025315400021226
  24. Mar. Biol. v.7 A ciliate red tide at Barrow, Alaska Holm-Hansen, O;F.J.R. Taylor;R.J. Barsdate https://doi.org/10.1007/BF00346802
  25. Mar. Ecol. Prog. Ser. v.201 Growth and razing responses of two chloroplast retaining dinoflagellates: effect of irradiance and prey species Jakobsen, H.H;J. Larsen;P.J. Hansen https://doi.org/10.3354/meps201121
  26. Materials of the Ⅱ All-Union Conference of Protozoologists, Part Ⅰ, General Protozoology Revision of a system of cyrtophorines Jankowski, A.W.;Markevich, A.P.(ed);Yu.I. Poljansky(ed)(et al)
  27. Proceedings of International Symposium in Equatorial Vertical Motion no.SUP. Observation blooms of Mesodinium rubrum in the upwelling area off Ecuador. Oceanololgica Acta Jimenez, R.;P. Intriago
  28. Aquaculture v.38 "Red" oysters (Ostrea edulis L.) caused by Mesodinium rubrum in Lake Grevelingen Kat, M. https://doi.org/10.1016/0044-8486(84)90343-0
  29. J. Plankton Res. v.24 Effect of Mesodinium rubrum(=Myrionecta rubra) on the action and absorption spectra of phytoplankton in a coastal marine inlet Kyewalyanga, M.;S. Sathyendranath;T. Platt https://doi.org/10.1093/plankt/24.7.687
  30. Limnol. Oceanogr. v.44 Chemoreception in a marine cryptophyte: behavioral plasticity in response to amino acids and nitrate Lee, E.S.;A.J. Lewitus;R.K. Zimmer https://doi.org/10.4319/lo.1999.44.6.1571
  31. Phycology(3rd ed) Cryptophyta Lee, R.E.
  32. J. Phycol v.36 Mixotrophy in Gyrodinium galatheanum (Dinophyceae): grazing responses to light intensity and inorganic nutrients Li, A.;D.K. Stoecker;D.W. Coats
  33. Adv. Aquatic Microbiol. v.3 Mesodinium rubrum - a unique photosynthetic ciliate Lindholm, T.
  34. Algae and symbioses: Plants, Animals, Fungi, Virus, Interactions Explored Mesodinium rubrum - a photosynthetic ciliate Lindholm, T;Reisser W.(ed)
  35. Biosystems v.21 Ultrastructure of the photosynthetic ciliate Mesodinium rubrum Lindholm, T.;P. Lindroos;A.C. Mork https://doi.org/10.1016/0303-2647(88)90007-X
  36. Wissenschaftliche Meeresuntersuchungen v.10 Untersuchung zur Feststellung des vollstandigen Gehaltes des Meeres an Plankton Lohmann, H.
  37. Am. J. Botany v.88 Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary Plastids Mueller, K.M.;M.C. Oliveira;R.G. Sheath;D.Bhattacharya https://doi.org/10.2307/3558445
  38. BioSystems v.10 Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia Oakley, B.R.;F.J.R. Taylor https://doi.org/10.1016/0303-2647(78)90019-9
  39. Neth. J. Sea Res. v.4 Pigments of the ciliate Mesodinium rubrum (Lohmann) Parsons, T.R.;D.J. Blackbourn https://doi.org/10.1016/0077-7579(68)90005-7
  40. Prog. Oceanogr v.20 The nearshore zone during coastal upwelling: daily variability and coupling between primary and secondary production off Central Chile Peterson, W.T.;D.F. Acros;G.B. McManus;H. Dam;D. Bellantoni;T. Johnson;P. Tiselius https://doi.org/10.1016/0079-6611(88)90052-3
  41. Limnol. Oceanogr. v.34 An experimentally determined carbon: volume ratio for marine "oligotrichous" ciliates from estuaries and coastal waters Putt, M.;Stoecker, D.K. https://doi.org/10.4319/lo.1989.34.6.1097
  42. Freshwater Biol. v.41 Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica Roberts, E.C.;J. Laybourn-Parry https://doi.org/10.1046/j.1365-2427.1999.00401.x
  43. Mar. Ecol. Prog. Ser. v.201 Responses of growth rate, pigment composition and optical properties of Cryptomonas sp. to light and nitrogen stresses Sciandra, A.;L. Lazzara;H. Claustre;M. Babin https://doi.org/10.3354/meps201107
  44. J. Phycol v.15 A carbon budget for the autotrophic ciliate Mesodinium rubrum Smith, W.O. Jr.;R.T. Barber https://doi.org/10.1111/j.0022-3646.1979.00027.x
  45. Doklady Biol. Sci. v.249 The 'red-tide' in the region of the Peruvian upwelling Sorokin, Yu. I.
  46. Dokl. Akad. Nauk. SSSR, Ser. Biol v.1989 Sorokin, Yu. I.
  47. Mar. Ecol. Prog. Ser. v.152 Mixotrophy in the dinoflagellate Prorocentrum minimum Stoecker, D.K.;A. Li;D.W. Coats;D.E. Gustafson;M.K. Nannen https://doi.org/10.3354/meps152001
  48. Mar. Ecol. Prog. Ser. v.73 Photosynthesis in Mesodinium rubrum: species-specific measurements and comparison to community rates Stoecker, D.K.;M. Putt;L.H. Dabis;A.E. Michaels https://doi.org/10.3354/meps073245
  49. Phytosynthesis Res. v.45 Decrease of polypetides in the PSI antenna complex with increasing growth irradiance in the red alga Porphyridium cruentum Tan, S.;G.W. Wolfe;F.X. Cunningham;E. Gantt https://doi.org/10.1007/BF00032230
  50. Nature v.224 Ultrastructure of the chloroplasts and associated structures within the marine ciliate Mesodinium rubrum (Lohmann) Taylor, F.J.R.;D.J. Blackbourn https://doi.org/10.1038/224819a0
  51. J. Fish. Res. Bd. Can v.28 The red-water ciliate Mesodinium rubrum and its "incomplete symbionts": a review including new ultrastructural observations Taylor, F.J.R.;D.J. Blackbourn https://doi.org/10.1139/f71-052
  52. Oceanology wash. v.25 Red tide in the Black Sea Tumantseva, N.I.
  53. J. Phycol. v.13 Effecto of blue-green light on photosynthetic pigments and chloroplast struture in unicelluar marine algae from six class Vesk, M.;S.W. Jeffrey
  54. J. Fish. Res. Bd. Can. v.34 A red tide caused by the marine ciliate Mesodinium rebrum in Passamaquoddy Bay, including pigment and ultrastructure studies of the endosymbiont White, A.W.;R.G. Sheath;J.A. Hellebust https://doi.org/10.1139/f77-066
  55. Phycologia v.22 Effect of irradiance on the physiology and ultrastructure of the marine cryptomonad , Cryptomonas strain Lis (Cryptophyceae) Thinh, L. https://doi.org/10.2216/i0031-8884-22-1-7.1
  56. J. Plankton Res. v.12 Formation of bloom by the symbiotic ciliate Mesodinium rubrum: the significance of nitrogen uptake Wilkerson, F.R.;G. Grunseich https://doi.org/10.1093/plankt/12.5.973
  57. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rebrum(in preparation) Yih, W.;H.S. Kim;H.J. Jeong;G. Myung;Y.G. Kim
  58. J. Mar. Biotechnol. v.5 The planktonic phototrophic ciliate Mesodinium rubrum, as a useful organism for marine biotechnological applications Yih. W.;J.H. Shim