DOI QR코드

DOI QR Code

결정구조와 이온 분극률에 따른 (Al,Mg,Ta)O2고용체의 마이크로파 유전상수 특성

Microwave Dielectric constant characteristics or (Al,Mg,Ta)O2 Solid Solutions with Crystal Structure and Ionic Polarizability

  • 최지원 (한국과학기술연구원 박막기술연구센터) ;
  • 하종윤 (한국과학기술연구원 박막기술연구센터) ;
  • 안병국 (전북대학교 신소재공학부) ;
  • 박용욱 (박용욱) ;
  • 윤석진 (한국과학기술연구원 박막기술연구센터) ;
  • 김현재 (한국과학기술연구원 박막기술연구센터)
  • 발행 : 2003.02.01

초록

The calculated and measured dielectric constants of (1-x)(A $l_{1}$2/ T $a_{1}$2/) $O_2$-x(M $g_{1}$3/ T $a_{2}$3/) $O_2$ (0$\leq$x$\leq$1.0) solid solutions were investigated by variations of ionic polarizability and crystal structure. (A $l_{1}$2/ T $a_{1}$2/) $O_2$ and (M $g_{1}$3/ T $a_{2}$3/) $O_2$ were orthorhombic and tetragonal trirutile structure, respectively. When (A $l_{1}$2/ T $a_{1}$2/) $O_2$ was substituted by (M $g_{1}$3/ T $a_{2}$3/) $O_2$, the phase transformed to tetragonal structure over 60 mole. Because the total ionic radius of [(Mg+2Ta)/3]$^{4+}$ was slightly bigger than one of [(Al+Ta)/2]$^{4+}$, the lattice parameters increased with an increase of (M $g_{1}$3/ T $a_{2}$3/) $O_2$ substitution. The measured dielectric constant increased with an increase of (M $g_{1}$3/ T $a_{2}$3/) $O_2$ substitution and coincided with dielectric mixing rule and the calculated dielectric constant with the molecular additivity rule. There were some differences between the measured and the calculated dielectric constant. The reason of the lowered dielectric constant comparing with the calculated one was compressed stress due to the electronic structure of tantalum.

키워드

참고문헌

  1. 전기전자재료학회논문지 v.9 no.4 $CaTiO_3-LaAlO_3$계 세라믹스의 마이크로파 유전특성 김현재;송준태;여동훈
  2. 전기전자재료학회논문지 v.10 no.9 이동통신용 $(Na_{\frac{1}{2}}Sm_{\frac{1}{2}})TiO_3-(Li_{\frac{1}{2}}Nd_{\frac{1}{2}})TiO_3$세라믹스의 마이크로파 유전특성 김경용;윤중락;이헌용
  3. 전기전자재료학회논문지 v.8 no.2 $0.15(Ba_{0.95}Sr_{0.05}O-0.15Sm_2O_3-0.7TiO_2$ 세라믹스의 마이크로파 유전특성 배선기;이영희;박인길;정장호
  4. Rev. Sci. Instrum. v.6 Precision lattice constants from X-ray powder photographs M. U. Kohen https://doi.org/10.1063/1.1751937
  5. IRE Trans. Microwave Theory Tech. v.8 A. dielectric method of measuring inductive capacitance in the millimeter range B. W. Hakki;P. D. Coleman https://doi.org/10.1109/TMTT.1960.1124749
  6. Tech. Rept. CPM 72-33, Inst. of Elec. and Comm. Eng. of Japan Measurement of complex dielectric constant by columnar dielectric resonator Y. Kobayashi;S. Tanaka
  7. Proc. of SSMM APMC 2001 New High-Q (Al,Mg)TaO₂microwave ceramics; part Ⅰ, structural characteristics J. W. Choi;C. Y. Kang;S. J. Yoon;H. J. Kim;H. J. Jung;K. H. Yoon
  8. Phys. Rev. B: Condens. Matter. v.30 Bond lengths around Isovalent Impurities and in semiconductor solid solutions J. L. Martin;A. Zunger https://doi.org/10.1103/PhysRevB.30.6217
  9. J. Appl. Phys. v.73 Dielectric polarizabilities of ions in oxides and fluorides R. D. Shannon https://doi.org/10.1063/1.353856
  10. J. Inorg. Nucl. Chem. v.26 Qualitative Approach to the Structural Differences between some mixed metal oxides containing $Sb^{5+}$, $Nb^{5+}$, and $Ta^{5+}$ G. Blasse https://doi.org/10.1016/0022-1902(64)80024-5