Abstract
This paper describes the quantitative analysis and the pattern recognition of partial discharge signals generated by particles in GIS. Four states of particles were simulated in this paper. Partial discharge signals from each state was measured and the Ф-Q-N distribution of partial discharge signals was displayed and then the Ф-Q, the Ф-Qm, the Ф-N and the Q-N distribution were displayed. Each distribution can be quantitatively represented by statistical parameters and the parameters were used for input data of pattern recognition. As the results, it was found that the forms of each distribution were different according to the particle states. Recognition rate using neural network was about 92〔%〕 and the more input data number, the more accurate results.
본 논문은 GIS내 파티클에 의해 발생한 부분방전 신호에 대한 정량적 분석 및 상태에 따른 패턴인식에 관하여 설명하였다. GIS내 파티클의 상태를 4가지로 모의하여 각각의 경우에 부분방전 신호를 계측한 후 Ф-Q-N분포로 나타내었고, 다시 Ф-Q분포, Ф-Qm분포, Ф-N분포, Ф-N분포로 나타내었다. 각각의 분포는 통계적 연산자에 의해 정량화 하여 분석하였고, 또한 연산자들을 패턴인식을 위한 입력데이터로 이용하여 수행하였다. 그 결과 파티클의 상태에 따른 분포 형태는 파티클의 상태에 따라 서로 다른 특성을 나타냈었으며, 또한 뉴럴 네트웍을 이용한 패턴 인식의 결과는 약92〔%〕였으며 연산자들의 입력 데이터가 많을수록 더 정확한 결과가 나타났다.