A CMOS Readout Circuit for Uncooled Micro-Bolometer Arrays

비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로

  • Published : 2003.01.01

Abstract

This paper proposes a CMOS readout circuit for uncooled micro-bolometer arrays adopting a four-point step calibration technique. The proposed readout circuit employing an 11b analog-to-digital converter (ADC), a 7b digital-to-analog converter (DAC), and an automatic gain control circuit (AGC) extracts minute infrared (IR) signals from the large output signals of uncooled micro-bolometer arrays including DC bias currents, inter-pixel process variations, and self-heating effects. Die area and Power consumption of the ADC are minimized with merged-capacitor switching (MCS) technique adopted. The current mirror with high linearity is proposed at the output stage of the DAC to calibrate inter-pixel process variations and self-heating effects. The prototype is fabricated on a double-poly double-metal 1.2 um CMOS process and the measured power consumption is 110 ㎽ from a 4.5 V supply. The measured differential nonlinearity (DNL) and integrat nonlinearity (INL) of the 11b ADC show $\pm$0.9 LSB and $\pm$1.8 LSB, while the DNL and INL of the 7b DAC show $\pm$0.1 LSB and $\pm$0.1 LSB.

본 논문에서는 기존의 방법과는 달리 4 단계의 보정 기법을 적용하여 미세한 적외선 (infrared : IR) 신호를 검출해내는 비냉각 적외선 센서 어레이를 위한 CMOS 신호 검출회로를 제안한다. 제안하는 신호 검출회로는 11 비트의 A/D 변환기 (analog-to digital converter : ADC)와 7 비트의 D/A 변환기(digital to-analog converter : DAC), 그리고 자동 이득 조절 회로 (automatic gain control circuit : AGC)로 구성되며, 비냉각 센서 어레이를 동작시키는 DC 바이어스 전류 성분, 화소간의 특성 차이에 의한 변화 성분과 자체 발열 (self-heating)에 의한 변화 성분을 포함하는 적외선 센서 어레이의 출력 신호로부터 미세한 적외선 신호 성분만을 선택적으로 얻어낸다. 제안하는 A/D 변환기에서는 병합 캐패시터 스위칭(merged-capacitor switching : MCS) 기법을 적용하여 면적 및 전력 소모를 최소화하였으며, D/A 변환기에서는 출력단에 높은 선형성을 가지는 전류 반복기를 사용하여 화소간의 특성 차이에 의한 변화 성분과 자체 발열에 의한 변화 성분을 보정할 수 있도록 하였다. 시제품으로 제작된 신호 검출회로는 1.2 um double-poly double-metal CMOS 공정을 사용하였으며, 4.5 V 전원전압에서 110 ㎽의 전력을 소모한다. 제작된 시제품으로부터 측정된 검출회로의 differential nonlinearity (DNL)와 integral nonlinearity (INL)는 A/D 변환기의 경우 11 비트의 해상도에서 ±0.9 LSB와 ±1.8 LSB이며, D/A 변환기의 경우 7비트의 해상도에서 ±0.1 LSB와 ±0.1 LSB이다.

Keywords

References

  1. C. Vedel, J. L. Martin, J. L. Ouvrier buffet, J. L. Tissot, M. Vilain, and J. J. Yon, 'Amorphous silicon based uncooled microbolometer IRFPA,' SPIE Proceedings, Vol. 3698, pp. 276-283, Apr. 1999 https://doi.org/10.1117/12.354529
  2. T. Breen, M. Kohin, C. A. Marshall, R. Murphy, T. White, A. Leary, and T. Parker, 'Evenmore applications of uncooled microbolometer sensors,' SPIE Proceedings, Vol. 3698, pp. 308-319, Apr. 1999 https://doi.org/10.1117/12.354533
  3. A. Tanaka, S. Matsumoto, N. Tsukamoto, S. Itoh, K. Chiba, T. Endoh, A. Nakazato, K. Okuyama, Y. Kumazawa. M. Hijikawa, H. Gotoh. T. Tanaka, and N. Teranishi, 'Infrared Focal Plane Array Incorporating Silicon IC Process Compatible Bolometer,' IEEE Trans. Electron Devices, Vol. 43, No. 11, pp. 1844-1850, Nov. 1996 https://doi.org/10.1109/16.543017
  4. C. Marshall, N. Butler, R. Blackwell, R. Murphy, and T. Breen, 'Uncooled Infrared Sensor With Digital Focal Plane Array,' SPIE Proceedings, Vol. 2746, pp. 23-31, Apr. 1996 https://doi.org/10.1117/12.243059
  5. B. E. Cole, R. E. Higashi, and R. A. Wood, 'Monolithic Two-Dimensional Arrays of Micromachined Microstructures for Infrared Applications,' IEEE Proceedings, Vol. 86, No. 8, pp. 1679-1686, Aug. 1998 https://doi.org/10.1109/5.704273
  6. J. L. Heath, G. T. Kincaid, J. T. Woodaway, and W. J. Parrish, '160 ${\times}$ 128 uncooled FPA performance review,' SPIE Proceedings, Vol. 3698, pp. 256-263, Apr. 1999 https://doi.org/10.1117/12.354527
  7. W. J. Parrish, and J. T. Woolaway, 'Improvements in uncooled systems using bias equalization,' SPIE Proceedings, Vol. 3698, Infrared Technology XXV, pp. 748-755, Apr. 1999 https://doi.org/10.1117/12.354575
  8. U. Ringh, C. Jansson, C. Svensson, and K. Liddiard, 'CMOS RC-Oscillator Technique for Digital Read Out from An IR Bolometer Array,' Transducer '95, pp. 138-141, june 1995.
  9. C. C. Liu, and C. H. Mastrangelo, 'IEDM Tech DIg.,An Ultrasensitive Uncoled Heat-Balancing Infrared Detector,' in IEDM tech Dig, Dec. 1996, pp. 549-552 https://doi.org/10.1109/IEDM.1996.554043
  10. S. Kavadias, P. De Moor, and C. Van Hoof, 'CMOS circuit for readout of microbolometer arrays' Electron. Lett., Vol. 37, No. 8, pp. 481-482, Apr. 2001 https://doi.org/10.1049/el:20010330
  11. J. M. Ingino, and B. A. Wooley, 'A continuously calibrated 12-b, 10-MS/s, 3.3-V A/D Converters,' IEEE J. Solid-State Circuits, Vol. 33, pp. 1920-1931, Dec. 1998 https://doi.org/10.1109/4.735532
  12. G. C. Ahn, H. C. Choi, S. I. Lim, S. H. Lee, and Chul-Dong Lee, 'A 12-b, 10-MHz, 250-mW CMOS A/D converter,' IEEE J. Solid-State Circuits, Vol. 31, pp. 2030-2035, Dec. 1996 https://doi.org/10.1109/4.545827
  13. S. U. Kwak, B. S. Song, and K. Bacrania, 'A 15-b 5-MSample/s low-spurious CMOS ADC,' IEEE J. Solid-State Circuits, Vol. 32, pp. 1866-1875, Dec. 1997 https://doi.org/10.1109/4.643645
  14. P. C. Yu, and H. S. Lee, 'A 2.5-V, 12-b, 5-Msample/s pipelined CMOS ADC,' IEEE J. Solid-State Circuits, Vol. 31, pp. 184-1861, Dec. 1996 https://doi.org/10.1109/4.545805
  15. Y. D. Jeon, S. C. Lee, S. M. Yoo, and S. H. Lee, 'ISCAS,Aquisition-time minimization and merged-capacitor switching techniques for samplingrate and resolution improvement of CMOS ADCs https://doi.org/10.1109/ISCAS.2000.856094
  16. T. Y. Wu, C. T. Jih, J. C. Chen, and C. Y. Wu, 'A low glitch 10-bit 75-MHz CMOS video D/A converter,' IEEE J. Solid-State Circuits, Vol. 30, No. 1, pp. 68-72, Jan. 1995 https://doi.org/10.1109/4.350191
  17. Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, 'A 10-b 70-MS/s CMOS D/A converter,' IEEE J. Solid-State Circuits, Vol. 26, No. 4, pp. 637-642, Apr. 1991 https://doi.org/10.1109/4.75066
  18. T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, 'An 80-MHz 8-bit CMOS D/A converter,' IEEE J. Solid-State Circuits, Vol. SC-21, No. 6, pp. 983-988, Dec 1986