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Abstract

We consider a single-input-single-output nonlinear system which is represented in a normal
form. The model contains the uncertainty. A high-gain observer is used to estimate the states
variables to reject a modeling uncertainty. We design the globally bounded output feedback
controller using sliding mode control to stabilize the closed-loop system. The globally bounded
output feedback controller reduce the peaking in the states variables. The proposed method give a
more design freedom in the design of the globally bounded controller than that of the previous work.
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I. Introduction

The output feedback control scheme can be
classified two schemes. One scheme is static
output feedback which does
observer to estimate the states of system. But

not wuse an

the scheme is limited to relative degree one

system. The other scheme is the use of
observe-based one which could be used for

relative degree higher than one system. Since
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the separation principle do not hold for

nonlinear system in the presence of imperfect
feedback cancellation and modeling uncertainty,
a high-gain observer has been used to reject
disturbance due to imperfect feedback cancella-
tion and modeling uncertaintym. However, the
of
impulse-like

in
of
which are wusually physical
For example, the works?®  exhibit
such a peaking in the state variables. Therefore

use a high-gain observer results

behavior, so called peaking,
state variables

variables.

it is desired to remove the peaking phenomenon
in state variables. The globally bounded control
was introduced to remove the peaking in state
variables””. Since the idea of the globally
bounded control was introduced, the idea has
been used for the design of continuous output
feedback control®™® which is satisfied Lipschitz
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condition for the controller. The paper[m worked
on the sliding mode control using a high-gain
observer and globally bounded control. Since
the

satisfy the Lipschtz condition, the analysis and

sliding mode control scheme does not
design scheme are different with the continuous
one. The work"” demonstrated that the peaking
of states variables was reduced with a sliding
mode control. There are two controller design
elements involved in the controller design of the
work. One element is the design of globally
bounded control and the other one is to design
the the sliding mode

condition when distance between the states and

controller  satisfied
estimates of the states is small enough. The
globally bounded control obtained via

saturation over the some region. However, a

was

relatively large magnitude of control input was
required because of the restriction on the
saturation region. In this paper, we propose a
method to give a more freedom to choose the
saturation region. The proposed method can
reduce the magnitude of the control effort due
the
is organized as

to the freedom of choosing saturation

region. The rest of paper
follows. Section I introduces a class of system
and problem statement to be considered. Section
Il states a high-gain observer structure and its
property with a globally bounded control. We
also describe a globally bounded sliding mode
control design method that ensures stabilize the
closed-loop system in the section II. Finally,
the of the
proposed method through an example in section
V.

we demonstrate performance

0. Problem Statement

We consider the following single-input
single-output nonlinear system defined over a
domain D

X = Ax+ b Ax)+ g(x)ul
y = Cx 1)

ehole) 2= Alo}7] 47|

(12)

ik

where X, u, y are state variables, control input,

output, respectively, and x=[x; x = x,] T,
0 0 1 -« 0 0

A= 1| : b= 1|
O 0 an’ 1 nxl,

e=[1 0 - 0] ,.

Remark 1 The nonlinear system (1), so called
can be derived from the

w= F(wH Glw)u, y=hw),
under the uniform relative degree assumptionw.

a normal form,

nonlinear system,

Let f.#) be a known nominal model of Ax).
that /(%)

f0)=0, and g(x) is nonsingular for all xeD.

Suppose sufficiently  smooth,

We also assume that the uncertainty of the
equation(1l) satisfies the following assumption.

Assumption 1 For all x€D, there is a scalar

Lipschitz function o(x) such that

[Ax) — £, (0] <o(x) 2

Our goal is the design of output feedback

controller to stabilize the nonlinear system

given by the equation (1) over domain D.

I. Output feedback controller
design

1. Robust high-gain observer with a globally
bounded control
To design an output feedback controller, we

use a following high-gain observer to estimate

the state variable x

N a; ~ .
X = x‘-+1+€—§(y— X0, i=1,,n—1

%, = fZU— %)+ 74(3) + g(Du

3

where %; is the estimate of the state variables

x; and € is a positive constant to be specified.
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The positive constant &; are chosen such that
the roots of the following equation are in the

open left half plane.
s ast M ta, s+a,=0

We rewrite the observer equation (3) into the
compact form

x=Ax+ b fo( %)+ g X)ul + Xe)Lc(x—~ %) (4

where L=la ;+a,l” and
D(e) = diag[1/e 1/e?+1/e"].

Let e,=x;— % ; be the estimation error, and
¢, =01/e" Ve,

The closed-loop equation can be rewritten as

define the scaled variables

Ax+ b Ax) + g(x)u]

(A= LT+ eblAx) — fo( ) +{g(x) — g(3)}u]
6)]

Il

x

I

et

where ¢=[¢1.85.¢,]7 Note that (A—Lc)
is a Hurwitz matrix. The closed-loop system
can be viewed as a singularly perturbed system
with x as the slow variables and ¢ as the fast
one. Define

Ry = {xeR”" | |Idl<c,},

Q= {teR" | 8l<c,/ "1}
Q= 20,

where ¢; is an arbitrary positive constant. The

set £ is defined for the region of allowable

initial condition. Note that £ could be any
compact set which is a subset of D. We just
define it for simplicity. We use a globally
bounded control functions as a control input.
We will specify the control input = to make a
globally bounded control later on. The following
lemma states that the fast variables decays
very rapidly during a short time period. The
proof of the lemma is the same as the proof of

Lemma 1 in [9], hence it is omitted.

2%
pe
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Lemma 1 Consider the closed-loop system (5)
and suppose that the control input u is globally
bounded. Then, for all (x(0),0)eQ , there
exist €1 and T =T (<T3 such that for all
0<eley, |UI<ke for all t€1T, Ty where T
is a finite time and T > T3 is the first time
x(t) exits from the any compact set containing
the set .

Remark 2 The equation (5) can be rewritten
as et=(A—Lco)t+ebd(x,e), where
8(-)=Ax)—fo( %)+ {gx)—e(R)}ue, We can

treat the term & as a perturbation term. The
perturbation term is multiplied by e. Hence its
effect diminishes as e — 0. The solution of
equation (5) has contains terms of the form
(1/e* Hye M. x(DH exhibits

impulse-like behavior & — 0. Since (%)

Therefore
is
coupled with control input which contains % ,
x(#) can also exhibit impulse-like behavior.
However the use of the globally bounded

control can reduce peaking in state variables.

2. Controller design

Controller design has two elements to be
considered. One element is the design of
globally bounded control and the other element
is the stabilization of the system with the fast
variables ¢ being O(e). First, we consider the
design of the control input which can stabilize
the closed-loop system with the fast variables ¢
being O(e) using sliding mode control, since
sliding mode control scheme is a simple and

M We choose a sliding sur-

robust control scheme
face S=M%, where M=[m, my, -, m, 1,11 and

m; are chosen such that ZA is Hurwitz where

0 1 : 0
0 0 1 0
A= : :
0 0 1
WMy T my . T My, g T My, n—1xn—1

Consider the following function

%) = (1/g( ) — M(Ax+ bf( 7))

—(p( %) +apsgn(S(x)] 6)
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where @) is a positive constant. The function
¥( %) satisfies the sliding mode condition when

(< ke as we will show in the proof of Lemma
2.

Note that the function
the
variables ¢ are not

P( x) may not satisfy
control the fast
O(e). In particular, the
sliding mode condition may not be satisfied

sliding mode when

when !<T|. The remaining part is the design of
a globally bounded control input. We take a

control input (%) as ¥( %), saturated outside

any compact £2,CW when %(§ exits W in
the first time. In particular, let
¢ =— /e RIM(AZ+ bf (%), ¢y=—(1/e(%))

(o(%)+ @) and Si=max ,_ ¢ { %) and take

u( %) =S sat( ¢ ( %)/S)) + Sysat{ i ( %)/ Sy)sen(S(%))
(7

sat( ) 1is the saturation function. One

u( %)

where
can verify that is a globally bounded

control input.

Lemma 2 Consider the closed-loop system
(5) with control input w(x) defined by (7).
Then the sliding mode condition

S(%) S( )< — a,|S(3)

is satisfied for t=T;.

Proof: The proof of this lemma have two parts.
One part is to prove to satisfy the sliding mode
¢ is O(e). Remaining part
O(e) for t=T;. Since the
similar to the proof of [9],

condition as long as

is to prove that { is
first part of proof is
we prove it briefly.

S(%)S(3%)

SCOMIA %+ b(f( %) + g(X)u)
+D(e)LAdx— %)

SCRIMIA T+ b(fy( %) + gZ)utbd( %)]
+ 0(e)

—(p(%) + IS ) + (o)

+ O(eNIS( %))

— a,|S( %)

o182 gatold wE Aols] 47

(14)

SR

where #(%) =A%) —f(% and @ is a some
positive constant. Note that for

D(e)Ldx— %) ==xbd( )+ Ole), the
result of [9]. To show that {|dI< e for =T, it
is sufficient to show that x(EW,
W,cD

defined. Consider the set

we use

for all ¢

where is some compact set to be

{XERn | |1Mxi£cs1, ”ZHSCA}

_ / A max (P) 21PBllcy
where €2~V 1 (P A ..(Q ,P and Q are

the that

W,

positive  definite matrices such
PA+ A TP=—Q, and ¢g is large enough such
that WCW. Lemma 2 implies that

W, KT,

% might be

outside  set for but  since

in the W for
W3z)=2"Pz where
The of

W(z) along the trajectories of equation(4) is

1S set
Define

z2=[%, %, &,

— _an—i ~
=x;,—e"'t %

e[ T, T,).

®)

derivative

given by
V(z) = — 27Q2+22 PpS(2)+22 PD(e)TT
< =2 o (QN 2P+ 20PBIN 21I1S(2)] + OCe)
V(2)<0, for ||Z||=8
where 5= [0 00 1] "1imy),

D(e) = diagle” ?,e" 3, ,¢e,1],

=010 = 0] (w0, T=[&,.t.-1], and
8 > 2¢cyllPBI/A nn (&) is a positive constant.
Define  the Wy={V(2)<4}}
8= A 1 (P82,

ze W,

where
V(z)<0 Hzli=s8,
S(x%) S(x)<0 and

This
=T,

set

Since for

t=2T,. Since

e W,

for

wc{ lzll<c, }, =T,

for
implies that % never leave the set for
Thus x€W, for all t
conclude that 8<%k for t=T,. Note that the

work[9] used the similar set with Wi for the

Therefore we can

saturation region. But we use the set Wi to

show that %(#) does not leave the set Wi, not
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use for the design of globally bounded control.
We use the any compact set containing initial
condition for the saturation region. Lemma 2
implies that the trajectories of the equation (4)
reach the sliding manifold S(%) =0 within a
finite time and remain in the sliding manifold
On the the

following equation holds

thereafter. sliding manifold,

= x,
4(7}11 }1+m2}2+'“+mn~1%n—l)_*'gn
— {ml( x1~6"41§1)+"‘+mn7—1

(xnfl’“eé’n—1)}+ ¢, (&)

After substituting the equation (8) into the
closed-loop equation (5), we have

z:[xl‘u-.,x n—l] T

z = Az+ED(e)¢ where ,
D(e) = diagk "', ¢,1], and
0 0 - 0
0 0 0 0
E= : :
0 0 0
—my T mg . T My, 1 n—ixn—1

There are positive definite matrices &, @2 P1 P»
such that PA+ AP =-Q and
Py(A—Ld)+(A—Lo) "P,=—@Q,, since A and
(A—Lc¢) are Hurwitz matrices. Consider the
function V{2, = z P2+ £ "P,¢
for the closed-loop system. Then

Lyapunov

—27Qz—(1/e) £TQy¢
+22TPED(e)¢

+2 L TP Ax) — £y %) + (g(x) — £ 7))
u(%)]

V(z, 0 =

Since A -), /(-),&(+) are smooth enough

functions, the following inequality holds

1A0) = £ %) + (g(x) = £ 1))l D <kylIndl + &1Ll (9)

where %, and % are some positive constant.
Using (8) and (9), we have
V(2,0 € =2 i (Q@DN2II2=(1/)A i (@I €112
+ kgl €12+ 2,11 £l1112|
_ _ [ HZH] T[J min (@)
gl 17,
||z||]
gl

_kd ]
(1/€)A iy (@) — ks

EA40%H SClE F 1B 15
for some positive constant %s and %44, It can be

A (Ql) —k4
verified that by (/A pin (Q)— ksl is a

positive definite matrix for sufficiently small
Therefore we can conclude that the closed-loop
system (5) is asymptotically stable.

min

E.

IV. Example

Consider the system

Xy = Xy

Xy = asinx,+u

y = X
where @; is an unknown coefficient that
satisfies la)|<0.4 and domain
D={x=R?| |Id|<10.5}. Suppose that initial

states belong to the set 2 -{xeR? | lldi<1}. A
high gain observer is constructed as

361 = 352"’(1/5)(3"— %1)
¥ = (1/eD)(y— %)+ u

For comparison, we design the controller
following the design scheme of [9], and refer to
the sliding surface

case 1. Choose

S(%) =%+ % . We use the saturation region

given by the design procedure of [9], It is
given by

Wea = {3€R? | —6< %<6, —2.5< &, %,<2.5}.,

Let ¢(%)=— %, — (0.5l Il +0.1)sge(s(%)) and
the control input is given by
Uusa( X) = = Scgenr 5K %Z/Scasell) = S case12
sat( D-AELE QL ogn(5(3)
where Seasert = max ;. (I %,0)=8.5 and
Seaserz= max oy (0.5 %[ +0.1)=6.1,

Following the design scheme proposed in this
choose W= {zeR? | ||%ll<1.2}.
One can verify that £2CW The control input

paper, we

is given by
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w( %) =— Sysaf( %,/S) — stal(M“iSu‘—_k‘(Ll)sgn(S(}))
where Sy=max ;_ufl %D=1.2 and

Sp=max .y (0.5 %/l +0.1)=0.9436

We simulate the response for x(0)=[1 0] 7 ,
%(0)=[0-117, &;=—0.4, and «=0.04. Fig. 1
and Fig. 2 show that state variables, *1(f) and

xo{f}, does not exhibit peaking phenomenon in
the both cases as we expected, since globally
bounded controliers are used. One can also

observe that the estimates of states, ¥; and

%, exhibit a peaking phenomenon. One can
observe that the attractivity to the sliding
manifold is achieved after short periods of time
from Fig. 3. In other words, the reaching
condition to the sliding manifold satisfy after
the distance between the states and estimates
of states being small enough. Fig. 4 shows that
the magnitude of the control input for both
cases. The magnitude of control input proposed
in this paper is much smaller than that of case
1.  This comes from the use of saturation

region using the proposed method.

The plot of x1 snd x2 for casst

s
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Fig. 1. The plot of states and estimates of states
for case 1.

(16)
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Fig. 2. The plot of states and estimates of states
for the proposed design scheme.

a2l 2.
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Fig. 3. The plot of phase portrait for the proposed
design scheme.
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Fig. 4. The plot of control input for case 1 and
the proposed design scheme((a) @ case 1
(b) : the proposed design scheme).

V. Conclusion

We have designed a globally bounded control
feedback that
stabilizes the a the
presence of modeling uncertainty. Even though

output sliding mode control

nonlinear system in
we use a high-gain observer to estimate the
states variables, the peaking does not exhibit
in the states variables. We propose and justify
a design method that give a more freedom in
the globally bounded control design than that of
the previous work. The magnitude of control
input can be reduced from the proposed method
due to the freedom of the design of a globally
bounded We the

performance of the proposed design method via

control. demonstrate

an example.
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“Asyrptotic

“A remark on the problem of



18 3015 HE71F o4 ebeld m= Aolr] A

eSS

PSS/ |

B B WEER)
19657 119 444, 1980+ ghafo
277 24, 19884 Polytechnic
University Dept. of Electrical
; Eng. AAL 1934vd Michgan State
L Univ. Dept. of Electrical Eng. 2t
AR 1982+d-19964 =R EFAL
] 3 A A AY A7 2, dA &

FeE A7) AR Ty 2as

(18)



