DOI QR코드

DOI QR Code

Exponential Stabilization of an Axially Translating Tensioned Beam by Boundary Control Together with a Passive Damper

길이방향으로 이동하고 장력을 가진 보의 경계제어를 통한 지수안정화

  • 최지윤 (부산대학교 지능기계공학과) ;
  • 홍금식 (부산대학교 기계공학부)
  • Published : 2003.01.01

Abstract

An active control of the lateral vibration of a translating tensioned Euler-Bemoulli beam is investigated. The dynamics of the translating tensioned beam is represented by a non-linear hyperbolic partial differential equation. A right boundary control law based upon the Lyapunov's second method is derived. The transverse motion of the translating tensioned beam is controlled by a time-varying external force besides a passive damping applied at the right boundary. Exponential stability of the closed loop system is proved. Simulation results demonstrate the effectiveness of the proposed controller.

Keywords

References

  1. G. F. Carrier, 'On the nonlinear vibration problem of the elastic string,' Quarterly of Applied Mathematics, Vol. 3, pp. 157-165, 1945
  2. V. A. Bapat and P. Srinivasan, 'Nonlinear transverse oscillations in traveling strings by the method of harmonic balance,' Journal of Applied Mechanics, Vol. 34, pp. 775-777, 1967 https://doi.org/10.1115/1.3607783
  3. J. A. Wickert and C. D. Mote, 'Classical vibration analysis of axially moving continua,' Journal of Applied Mechanics, Vol. 57, pp. 738-744, 1990 https://doi.org/10.1115/1.2897085
  4. J. A. Wickert, 'Non-linear vibration of a traveling tensioned beam,' International Journal of Non-Linear Mechanics, Vol. 27, No. 3, pp. 503-517, 1992 https://doi.org/10.1016/0020-7462(92)90016-Z
  5. K. Oshima, T. Takigami, and Y. Hayakawa, 'Robust vibration control of a cantilever beam using self-sensing actuator,' JSME International Journal Series C, Vol. 40, No. 4, pp. 681-687, 1997 https://doi.org/10.1299/jsmec.40.681
  6. F. Pellicano and F. Zirilli, 'Boundary layers and non-linear vibrations in an axially moving beam,' International Journal of Non-Linear Mechanics, Vol. 33, No. 4, pp. 691-694, 1998 https://doi.org/10.1016/S0020-7462(97)00044-9
  7. S. M. Shahruz, 'Boundary control of the axially moving kirchhoff string,' Automatica, Vol. 34, No. 10, pp. 273-1277, 1998 https://doi.org/10.1016/S0005-1098(98)00074-0
  8. S. M. Shahruz, 'Boundary control of a non-linear axially moving string,' International Journal of Robust Nonlinear Control, Vol. 10, pp. 17-25, 2000 https://doi.org/10.1002/(SICI)1099-1239(200001)10:1<17::AID-RNC458>3.0.CO;2-9
  9. J. C. Oostveen and R. F. Curtain, 'Robustly stabilization controllers for dissipative infinite-dimensional systems with collocated actuators sensor,' Automatica, Vol. 36, No. 3, pp. 337-348, 2000 https://doi.org/10.1016/S0005-1098(99)00169-7
  10. C. D. Mote, 'A study of band saw vibration,' Journal of the Franklin Institute, Vol. 279, pp. 430-444, 1965 https://doi.org/10.1016/0016-0032(65)90273-5
  11. J. A. Wickert and C. D. Mote, 'On the energetics of axially moving continua,' Journal of Acoustic Society of America, vol. 85, No. 3, pp. 1365-1368, 1988 https://doi.org/10.1121/1.397418
  12. O. Morgul, 'Dynamics boundary control of a Euler-bernoulli beam,' IEEE Transactions on Automatic Control, Vol. 37, No. 5, pp. 639-642, 1992 https://doi.org/10.1109/9.135504
  13. H. Laousy, C. Z. Xu, and G. Sallet, 'Boundary feedback stabilization of a rotating body-beam system,' IEEE Transactions on Automatic Control, Vol. 41, No. 2, pp. 241-244, 1996 https://doi.org/10.1109/9.481526
  14. S. Y. Lee and C. D. Mote, 'Vibration control of an axially moving string by boundary control,' ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 118, No. 1, pp. 66-74, 1996 https://doi.org/10.1115/1.2801153
  15. R. F. Fung, J. W. Wu, and S. L. Wu, 'Exponential stability of an axially moving string by linear boundary feedback,' Automatica, Vol. 35, No. 1, pp. 177-181, 1999 https://doi.org/10.1016/S0005-1098(98)00173-3
  16. R. F. Fung, J. W. Wu, and S. L. Wu, 'Stabilization of an axially moving string by non-linear boundary feedback,' ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 121, No. 1, pp. 117-120, 1999 https://doi.org/10.1115/1.2802428
  17. S. Y. Lee and C. D. Mote, 'Wave characteristics and vibration control of translating beams by optimal boundary damping,' Journal of Vibration and Acoustics, Vol. 121, No. 1, pp. 18-25, 1999 https://doi.org/10.1115/1.2893942
  18. Y. Li and C. D. Rahn, 'Adaptive vibration isolation for axially moving beams,' IEEE/ASME Transactions on Mechanics, Vol. 5, No. 4, pp. 419-428, 2000 https://doi.org/10.1109/3516.891053
  19. Y. Li, D. Aron, and C. D. Rahn, 'Axially vibration isolation for axially moving strings: theory and experiment,' Automatica, Vol. 38, No. 3, pp. 379-389, 2002 https://doi.org/10.1016/S0005-1098(01)00219-9
  20. M. P. Fard and S. I. Sagatun, 'Exponential stabilization of a transversely vibrating beam via boundary control,' Journal of Sound and Vibration, Vol. 240, No. 4, pp. 613-622, 2001 https://doi.org/10.1006/jsvi.2000.3252
  21. D. B. McIver, 'Hamiltion's principle for systems of changing mass,' Journal of Engineering Mathematics, Vol. 7, No. 3, 249-261, 1973 https://doi.org/10.1007/BF01535286
  22. H. Benaroya, Mechanical Vibration; Analysis, Uncertainties, and Control, Prentice Hall, 1998
  23. 이승엽, 사재천, 이민형, '축방향으로 이동하며 길이가 변하는 연속체의 자유진동 및 동적 안정성,' 한국소음진동공학회지, 제12권, 제4호, pp. 272-279, 2002
  24. 이승엽, 박상규, '길이가 변하는 현의 자유진동 특성,' 한국소음진동공학회지, 제9권, 제5호, pp. 906-913, 1999
  25. 류두현, 박영필, '속도경계제어를 이용한 축방향 주행현의 횡진동 제어,' 대한기계학회논문집A권, 제25권, 제1호, pp. 135-144, 2001