THE F-VECTORS OF SOME TORIC FANO VARIETIES

  • Park, Hye-Sook (Department of Mathematics Education, Seowon University)
  • Published : 2003.01.01

Abstract

A toric variety is defined by a certain collection of cones. Especially a toric Fano variety is obtained from a special nonsingular fan. In this paper, we define the f-vectors of toric Fano varieties as the numbers of faces of the corresponding fans, and investigate the f-vectors of some toric Fano varieties.

Keywords

References

  1. Toroidal Fano 3-fords, Math. USSR-Izv. v.19 V. V. Baturev
  2. Izv. Akzd. Nauk. SSSR. Ser. Mat. v.45 V. V. Baturev
  3. Journal of Mathematical Science(New York) v.94 On the classification of toric Fano 4-folds V. V. Batyrev
  4. Face numbers of polytopes and complexes, Handbook of discreet and computational geometry L. J. Billera;A. Bjorner;O'Rourke;Goodman(eds.)
  5. J. Combinatorial Theory (A) v.31 A proof of sufficiency of McMullen's condition for f-vectors of simplicial convex polytopes L. J. Billera;C. W. Lee
  6. Comptes Rendus de l'Academie des Sciences v.332 On the birational geometry of toric Fano 4fords C. Casagrahande
  7. Perprint, math. AG/0210348 Centrally symmetric generators in toric fano varieties C. Casagrande
  8. Russian Math. Surveys v.33 The geometru of troic varieties V. I. Danilov
  9. Ergebnisse der Math. v.15 no.3 Convex Bodies and Algebraic Geometry-An Introduction to the Theory of Toric Varieties T. Oda
  10. Tohoku Math. J. v.43 Linear Gale transforms and gelfand-Kapranov-Zelevinskih decompositions T. Oda;H. S. Park
  11. Tohoku Math. J. v.45 The Chow rings and GKZ-decompositions for Q-factorial Toric Varieties H. S. Park
  12. Korean J. Com. & Appl. Math. v.3 The Chow rings for 3-dimensional toric varieties with one bad isolated singularity H. S. Park
  13. Tohoku Math. J. v.52 Toward the slassification of higher dimensional toric Fano varieties H. Sato
  14. Advances in Math. v.35 The number of faces of a simplicial convex pilytope R. P. Stanley
  15. Progress in Math. v.41 Combinatorics and Commutative algebra R. P. Stanley
  16. Math. USSR-Izv. v.24 Toroidal Fano varieties and root systems V. E. Voskresenskij;A. A. Klyacho
  17. Tokyo J. Math. v.5 The classification of Fano 3-fols with torus embeddings K. Watanabe;M. Watanabe
  18. Graduate texts in Math. v.152 Lectures on Polytopes G. M. Ziegler