METRICS ON A SPLIT NORMED ALMOST LINEAR SPACE

  • Lee, Sang-Han (Department of Cultural Studies, Chungbuk Provincial University of Science & Technology)
  • 발행 : 2003.01.01

초록

In this paper, we introduce metrics d, p and ${\mu}$ on a normed almost linear space (X, III.III). And we prove that above three metrics are equivalent if a normed almost linear space X has a basis and splits as X = W$_X$ + V$_X$.

키워드

참고문헌

  1. Proceedings of the (12th) Winter School on Abstract Analysis (Srin 1984). Suppl. Rend. Cric. Mat. Palermo Ⅱ. Ser. v.5 An approach to generalizing Banach spaces: Normed almost linear spaces G. Godini
  2. J. Approx. Theory v.43 A framework for best simultaneous approximation : Normed almost linear spaces G. Godini
  3. Math. Ann. v.279 On Normed Almost Linear Spaces G. Godini
  4. Bull. Korean Math. Soc. v.34 A metric induced by a norm on normed almost spaces S. M. Im;S. H. Lee
  5. Bull. Korean Math. Soc. v.34 Uniqueness of bases for almost linear spaces S. M. Im;S. H. Lee
  6. Comm. Korean Math. Soc. v.10 Reflexivity of normed almost linear spaces S. H. Lee
  7. Ph. D. Thesis Normed Almost Linear Spaces S. H. Lee
  8. Bull. Korean Math. Soc. v.36 A metric on normed almost linear spaces S. H. Lee;K. W. Jun