참고문헌
- J. Appl. Math. & Computing v.10 no.1 Stability and bifurcation in a diffusive prey-predator system: non-linear bifurcation analysis R. Bhattacharya;M. Bandyopadhyay;S. Banerjee
- SIAM J. Appl. Math. v.33 Stabilitity properties of solutions to systems of reaction diffusion equations R. G. Casten;C. F. Holland
- Acta Math. Hunger v.63 Bifurcation in a predator-prey model with momory and diffusion: Ⅱ Turing bifurcation M. Cavani;M. Farkas
- Ind. U. Math. J. v.26 Positively invariant regions for systems of nonlinear diffusion equations K. Chueh;C. Conley;J. Smoller
- Archive Rat. Mech. anal. v.52 Bifurcation, Perturbation of simple eigenvalues and linearized stability M. G. Crandall;P. H. Rabinowitz
- Korean J. Comput. Appl. Math. v.5 no.2 Ratio dependent predation: A bifurcation analyaia Dipak Kesh;Debasis Mukherjee;A. K. Sakar;A. B. Roy
- Math. Z. v.194 An initial-boundary-value problem for a certain density-dependent diffusion system P. Deuring
- SEA Bull. Math. v.19 no.2 On the distribution of capital and labour in a closed economy M. Farkas
- Differential Equations and Dynamical Systems v.7 no.2 Comparison of different ways of modelling cross-diffusion M. Faekas
- Partial Differenrial Equation of Parabolic Type A. Friedman
- Kybernetik v.12 A theory of biological pattern formation A. Gierer;H. Meinhardt
- Quart. J. Appl. Math. v.32 Some mathematical models for population dynamics that lead to segregation M. E. Gurtin
- J. Theor Biol. v.65 The diffusive Loka-Votka oscillating system J. Jorne
- Bull. Math. Biophys v.21 Further considerations on the statistical mechanics of biological associations E. H. Kerner
- Nonlinear Analysis v.21 Smooth solutions to a quasilinear system of diffusion equation for a certain population model J. U. Kim
- Annales Univ. Sci. Budapest v.42 Pattern formation in bounded spatial domains S. Kobvacs
- Some special case Studia Scienriarum Mathematicarum Hungarica v.11 Complete systems of eigenfunctions of the wave equation E. Makai
- Publ. RIMS v.19 Pattern formation in competion-diffusion systems in nonconvex domains H. Matano;M. Mimura
- Monographis in Population Biology Stabilitity and Complexity in Model Ecosystems R. May
- Hiroshima math J. v.11 Stationary pattern of some deensity-dependent diffusion system with compertitive dynamics M. Mimura
- Mathematical Biology, Biomathematics v.19 J. D. Murray
- Mathematical Models Diffusion and Ecological Problems A. Okubo
- Nonlinear Analysis v.14 Global existence of a strongly coupled puasilinear parabolic systems M. Pozio;A. Tesei
- Lecture Notes in Methematics Global solutions of reaction-diffusio systems F. Rothe
- Shock Waews and Reaction-Diffusion Equations J. Smoller
- Dissipaative Structures and Catastrophes in Ecology Nonlinear Wawes Yu, M. Svirezhev
- Mir. Stability of Biological Communities Yu, M. Svirezhev;D. O. Logofet
- Physical Review E v.48 no.1 Necessary condition of the Turing instability L. Szill;J. Toth
- Tohoke Math. Journ. v.31 Stability of bifurcating solutions of the Gierer-Meinhardt system I. Takagi
- Phil. Trans. Roy. soc. v.B237 no.2 A chemical basis of borphogenesis A. Turing
- Nonlinear Analysis, Theory, Methods & Applocations v.24 no.9 Global solutions for quasilinear parabolic systems with cross-diffusion effects Y. Yamada