DOI QR코드

DOI QR Code

Suppression of Powdery Mildew Development in Oriental Melon by Silicate Fertilizer

규산질 비료의 참외 흰가루병 발생 억제 효과

  • 류나현 (대구대학교 생명자원학부) ;
  • 최미영 (대구대학교 생명자원학부) ;
  • 류연주 (대구대학교 생명자원학부) ;
  • 조현종 (대구대학교 생명환경학부) ;
  • 이용세 (대구대학교 생명자원학부) ;
  • 이영득 (대구대학교 생명환경학부) ;
  • 정종배 (대구대학교 생명환경학부)
  • Published : 2003.12.31

Abstract

Silicon is known to accumulate in plants and results in greater resistance to diseases and insect pests. In this study, we investigated the effect of silicate fertilizer applied in soil on the development of powdery mildew of oriental melon. Oriental melon seedlings of four-leaf stage were transplanted and grown in a plastic film house. Silicate fertilizer was applied to maintain soil available $SiO_2$ level of 200 mg/kg one week before transplanting. Fungicide triflumizol was sprayed three times; one, two, and three weeks after transplanting. Sphaerotheca fuliginea was inoculated 2 weeks after transplanting. The number of infected leaf and the number of fungal colony in leaves were measured one, two, and three weeks after the inoculation. Three weeks after the fungal inoculation, in the treatment of fungicide triflumizol. infected leaf numbers and number of colony per leaf were reduced by 10 and 58%, respectively. In the silicate fertilizer treatment, infected leaf numbers and numbers of colony per infected leaf were suppressed only by 6 and 16%, respectively, and the efficacy was lower than that of the fungicide triflumizol. The combined treatment of silicate fertilizer and the fungicide suppressed powdery mildew more effectively, and infected leaf numbers and numbers of colony per leaf were reduced by 31 and 80%, respectively. These results indicate that although silicate fertilizer itself is not much effective in the suppression of powdery mildew, it can significantly enhance the efficacy of the fungicide.

토양에 시용한 규산의 참외 흰가루병에 대한 직접적인 억제 효과와 살균제의 방제 효과를 증진시킬 수 있는 보조효과를 조사하였다. 규산질 비료의 처리는 흰가루병 균에 의해 감염된 참외 잎에서 균사의 생장과 분생포자의 형성을 억제함으로써 흰가루병 발생을 일부 억제할 수 있는 것으로 조사되었다. 물론 규산질 비료 자체만의 흰가루병 발생 억제 효과는 매우 미약한 수준이었으나 살균제의 흰가루병 방제 효과를 크게 증진시켜줄 수 있는 것으로 나타났다. 따라서 현재 농가 현장에서 밝혀지고 있는 규산질 비료의 참외 병해 발생 억제 효과는 주로 이러한 살균제의 효과를 증진시킬 수 있는 규산의 보조적인 작용에 기인하는 것으로 판단된다. 따라서 토양에 대한 적절한 수준의 규산질 비료의 시용은 살균제의 방제 효과 증진을 통하여 과다한 약제의 사용과 그에 따른 부작용을 경감시킬 수 있을 것으로 보인다. 규산질 비료의 흰가루병 발생 억제 효과를 증진시키기 위해서는 앞으로 병의 발생을 최대로 억제할 수 있는 참외 잎 중의 적정 규소 함량에 대한 검토 등의 추가적인 연구가 필요 할 것이다.

Keywords

References

  1. Lewin, J. and Reimann, B. E. F. (1969) Silicon and plant growth, Annu. Rev. Plant Physiol. 20, 289-304 https://doi.org/10.1146/annurev.pp.20.060169.001445
  2. Miyake, Y. and Takahashi, E. (1978) Silicon deficiency of tomato plant, Soil Sci. Plant Nutr. 24, 175-189 https://doi.org/10.1080/00380768.1978.10433094
  3. Miyake, Y. and Takahashi, E (1983) Effect of silicon on the growth of solution cultured cucumber plant, Soil Sci. Plant Nutr. 29, 71-83 https://doi.org/10.1080/00380768.1983.10432407
  4. Parry, D. W. and Smithson, F. (1964) Types of opaline silica deposition in the leaves of Brithish grasses, Ann. Bot. 28, 169-185 https://doi.org/10.1093/oxfordjournals.aob.a083891
  5. Idris, M, Hossain, M. M. and Choudhury, F. A. (1975) The effect of silicon on lodging of rice in presence of added nitrogen, Plant Soil 43, 691-695 https://doi.org/10.1007/BF01928531
  6. Deren, C. W., Datnoff, L. E., Snyder, G. H. and Martin, F. G. (1994) Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic Histosols, Crop Sci. 34, 733-737 https://doi.org/10.2135/cropsci1994.0011183X003400030024x
  7. Ito, K. and Chiba, K. (1994) Relationship between silicate fertility of soil and irrigation water and the occurrence of rice blast disease, Tohoku Agric. Res. 47, 7-8
  8. Saigusa, M, Yamamoto, A and Shibuya, K. (2000) Agricultural use of porous hydrated calcium silicate, Plant Prod. Sci. 3, 51-54 https://doi.org/10.1626/pps.3.51
  9. Volk, R. J., Kahn, R. P. and Weintraub, R. L. (1958) Silicon content of the rice plant as a factor influencing its resistance to infection by the blast fungus, Piricularia oryzae, Phytopathol. 48, 179-184
  10. Sherwood, R. T. and Vance, C. P. (1980) Resistance to fungal penetration in Gramineae, Phytopathol. 70, 273-279 https://doi.org/10.1094/Phyto-70-273
  11. Belanger, R. R., Browen, P. A., Ehert, D L. and Menzies, J. G. (1995) Soluble silicon. Its role in crop and disease management of greenhouse crops, Plant Dis. 79, 329-336 https://doi.org/10.1094/PD-79-0329
  12. Menzies. J., Bowen, P., Ehert, D. and Glass, A. D. M. (1992) Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber, muskmelon, and zucchini squash, J. Am. Soc. Hortic. Sci. 117, 902-905
  13. Bowen, P., Menzies, J., Ehert, D., Samuels, L. and Glass, A. D. M. (1992) Soluble silicon sprays inhibit powdery mildew development on grape leaves, J. Am. Soc. Hortic. Sci. 117, 906-912
  14. Menzies, J. G, Ehert, D. L., Glass, A. D. M., Helmer, T., Koch, C. and Seywerd, F. (1991) Effects of soluble silicon on the parasitic fitness of Sphaerotheca fuliginea on Cucumis sativus, Phytopathol. 81, 84-88 https://doi.org/10.1094/Phyto-81-84
  15. Cho, I. C., Lee, S. H. and Cha, B. J. (1998) Effects of soluble silicon and several surfactants on the development of powdery mildew of cucumber, Korean J. Environ. Agric. 17, 306-311
  16. Lee J. S. and Yiem, M. S. (2000) Effects of soluble silicon on development of powdery mildew (Sphaerotheca fuliginea) in cucumber plants, Korean J. Pestic. Sci. 4, 37-43
  17. Dik, A. J., Verhaar, M. A. and Belanger, R. R. (1998) Comparison of three biological control agents against cucumber powdery mildew (Sphaerotheca fuliginea) in semi commercial scale glasshouse trials, Eur. J. Plant Pathol. 104, 413-423 https://doi.org/10.1023/A:1008025416672
  18. Wolf, G. and Fric, F. (1981) A rapid staining method for Erysiphe graminis f. sp. hordei in and whole barley leaves with a protein-specific dye, Phytopathol. 71:596-598 https://doi.org/10.1094/Phyto-71-596
  19. Eliot, C. L. and Snyder, G. H. (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw, J. Agric. Food Chem. 39, 1118-119 https://doi.org/10.1021/jf00006a024
  20. Heath, M. C. (1979) Partial characterization of the electron-opaque deposits formed in the non-host plant, French bean, after cowpea rust infection, Physiol. Plant Pathol. 15, 141-148 https://doi.org/10.1016/0048-4059(79)90062-6

Cited by

  1. Enhancement of Antifungal Activity of Anthracnose in Pepper by Nanopaticles of Thiamine Di-lauryl Sulfate vol.19, pp.3, 2011, https://doi.org/10.7783/KJMCS.2011.19.3.198
  2. Antifungal Activity of Zanthoxylium schinifolium Against Fusarium graminearum, a Barley Powdery Mildew Fungus. vol.18, pp.7, 2008, https://doi.org/10.5352/JLS.2008.18.7.974
  3. Influences of Silicate Fertilizer Application on Soil Properties and Red Pepper Productivity in Plastic Film House vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.254