East Asian Math J. 19 (2003), No. 1, pp 151-164

A STUDY ON FAITHFUL AND MONOGENIC *R*-GROUPS

Yong Uk Cho

ABSTRACT. Throughout this paper, we will consider that R is a near-ring and G is an R-group. We initiate the study of monogenic and strongly monogenic R-groups and their basic properties Also, we investigate some properties of D G. R-groups, faithful R-groups and monogenic R-groups and we determine that when near-rings are rings.

1. Introduction

In this paper, R is a near-ring, that is, R is an algebraic system $(R, +, \cdot)$ with two binary operations + and \cdot such that (R, +) is a group (not necessarily abelian), (R, \cdot) is a semigroup and the left distributive law holds: a(b + c) = ab + ac for all a, b, c in R. If R has a unity 1, then R is called unitary. If 0 is the neutral element of the group (R, +) then the left distributive law implies the identity a0 = 0 for all $a \in R$. However, 0a is not equal to 0, in general. An element d in R is called distributive if (a + b)d = ad + bd for all a and b in R. A near-ring R with (R, +) is abelian is called an *abelian* near-ring.

We consider the following notations: Given a near-ring R_1

$$R_0 = \{ a \in R \mid 0a = 0 \}$$

Received April 30, 2003

²⁰⁰⁰ Mathematics Subject Classification 16Y30

Key words and phrases simple and R-simple, monogenic and strongly monogenic, faithful R-groups, D.G. (R, S)-group

which is called the zero symetric part of R,

$$R_{c} = \{a \in R \mid 0a = a\} = \{a \in R \mid ra = a, \text{ for all } r \in R\}$$

which is called the *constant part* of R, and

$$R_d = \{a \in R \mid a \text{ is distributive}\}$$

which is called the *distributive part* of R.

We note that R_0 and R_c are subnear-rings of R, but R_d is not a subnear-ring of R. A near-ring R with the extra axiom 0a = 0for all $a \in R$, that is, $R = R_0$ is said to be zero symmetric, also, in case $R = R_c$, R is called a *constant* near-ring, and in case $R = R_d$, R is called a *distributive* near-ring. From the Pierce decomposition theorem, we get

$$R = R_0 \oplus R_c$$

as additive groups. So every element $a \in R$ has a unique representation of the form a = b + c, where $b \in R_0$ and $c \in R_c$.

An *ideal* of R is a subset I of R such that (i) (I, +) is a normal subgroup of (R, +), (ii) $a(I + b) - ab \subseteq I$ for all $a, b \in R$, (iii) $(I + a)b - ab \subseteq I$ for all $a, b \in R$. If I satisfies (i) and (ii) then it is called a *left ideal* of R. If I satisfies (i) and (iii) then it is called a *right ideal* of R.

On the other hand, a *(two-sided)* R-subgroup of R is a subset H of R such that (i) (H, +) is a subgroup of (R, +), (ii) $RH \subseteq H$ and (iii) $HR \subseteq H$. If H satisfies (i) and (ii) then it is called a *left* R-subgroup of R. If H satisfies (i) and (iii) then it is called a *right* R-subgroup of R.

Note that normal R-subgroups of R may not be ideals of R.

Similarly, a subset H of R such that $RH \subseteq H$ is called a *left* R-subset of R, a subset H of R such that $HR \subseteq H$ is called a *right* R-subset of R, and a left and right R-subset H is said to be a *(two-sided)* R-subset of R.

Also, a subset H of R is called a *base* (of equality) if for all $a, b \in R$ and all $x \in H$ xa = xb implies a = b.

Let (G, +) be a group (not necessarily abelian). In the set

$$M(G) := \{f \mid f : G \longrightarrow G\}$$

of all the self maps of G, if we define the sum f + g of any two mappings f, g in M(G) by the rule x(f+g) = xf + xg for all $x \in G$ (called the *pointwise addition of maps*) and the product $f \cdot g$ by the rule $x(f \cdot g) = (xf)g$ for all $x \in G$, then $(M(G), +, \cdot)$ becomes a near-ring. It is called the *self map near-ring* of the group G or *near-ring of self maps* on G.

Also, if we define the set

$$M_0(G) := \{ f \in M(G) \mid of = o \}$$

for additive group G with identity o, then $(M_0(G), +, \cdot)$ is a zero symmetric near-ring.

Let R and S be two near-rings. Then a mapping θ from R to S is called a *near-ring homomorphism* if for all $a, b \in R$, (i) $(a+b)\theta = a\theta + b\theta$ and (ii) $(ab)\theta = a\theta b\theta$.

We can replace homomorphism by momomorphism, epimorphism, isomorphism, endomorphism and automorphism, if these terms have their usual meanings as for rings ([1]).

Let R be any near-ring and G an additive group. Then G is called an R-group if there exists a near-ring homomorphism

$$\theta : (R, +, \cdot) \longrightarrow (M(G), +, \cdot).$$

Such a homomorphism θ is called a *representation* of R on G, we write that xr (right scalar multiplication in R) for $x(\theta_r)$ for all $x \in G$ and $r \in R$. If R is unitary, then R-group G is called *unitary*. Thus an R-group is an additive group G satisfying (i) x(a+b) = xa+xb, (ii) x(ab) = (xa)b and (iii) x1 = x (if R has a unity 1), for all $x \in G$ and $a, b \in R$. Sometimes, we denote an R-group G simply by G_R . We note that R itself is an R-group called the *regular group*.

Moreover, naturally, every group G has an M(G)-group structure, from the representation of M(G) on G given by applying $f \in M(G)$ to the $x \in G$ as a scalar multiplication xf.

An R-group G with the property that for each $x, y \in G$ and $a \in R$, (x + y)a = xa + ya is called a *distributive* R-group, and also an R-group G with (G, +) is abelian is called an *abelian* R-group. For example, if (G, +) is abelian, then M(G) is an abelian nearring and moreover, G is an abelian M(G)-group, on the other hand, every distributive near-ring R is a distributive R-group. We can seek a distributive abelian R-groups at lemma 2.22, in section 2.

We denote that the neutral element of G by o, this is different from the neutral element 0 of the near-ring R, also we write the trivial groups (or ideals) of G and R as $\{o\} =: o$ and $\{0\} =: 0$ respectively.

A representation θ of R on G is called faithful if $Ker\theta = \{0\}$ In this case, we say that G is a faithful R-group, or that R acts faithfully on G.

For an *R*-group *G*, a subgroup *T* of *G* such that $TR \subseteq T$ is called an *R*-subgroup of *G*, and an *R*-ideal of *G* is a normal subgroup *N* of *G* such that $(N + x)a - xa \subseteq N$ for all $x \in G$, $a \in R$. The *R*-ideals of the regular group *R* are precisely the right ideals of *R*. Also, a subset *V* of *G* such that $VR \subseteq V$ is called an *R*-subset of *G*.

Let G, T be two additive groups (not necessarily abelian). Then the set

$$M(G, T) := \{f \mid f : G \longrightarrow T\}$$

of all maps from G to T becomes an additive group under pointwise addition of maps. Since M(T) is a near-ring of self maps on T, we obtain that M(G, T) is an M(T)-group with a scalar multiplition.

$$M(G, T) \times M(T) \longrightarrow M(G, T)$$

defined by $(f, g) \mapsto f \cdot g$, where $x(f \cdot g) = (xf)g$ for all $x \in G$.

Let G and T be two R-groups. Then a mapping $f: G \longrightarrow T$ is called a *R*-group homomorphism if for all $x, y \in G$ and $a \in R$, (i) (x+y)f = xf + yf and (ii) (xa)f = (xf)a.

Also, we can replace R-group homomorphism by R-group momomorphism, R-group epimorphism, R-group isomorphism, R-group endomorphism and R-group automorphism, if these terms have their usual meanings as for modules ([1]).

A near-ring R is called *distributively generated* (briefly, D.G.) by S if

$$(R,+) = gp < S >= gp < R_d >$$

where S is a semigroup of distributive elements in R.

In particular, $S = R_d$ (this is motivated by the fact that the set of all distributive elements of R is multiplicatively closed and contains the unity of R if it exists), where gp < S > is a group generated by S, we denote this D G. near-ring R which is generated by S is (R, S).

We also note that the set of all distributive elements of M(G) are obviously the set End(G) of all endomorphisms of the group G, that is,

$$(M(G))_d = End(G)$$

which is a semigroup under composition, but not yet a near-ring. Here we denote E(G) is the D.G. near-ring generated by End(G), that is,

$$E(G) = (M(G)), End(G).$$

Obviously, E(G) is a subnear-ring of $(M_0(G), +, \cdot)$. Thus we say that E(G) is the *endomorphism near-ring* of the group G.

Let (R, S) and (T, U) be D.G. near-rings. Then a near-ring homomorphism

$$\theta: (R,S) \longrightarrow (T,U)$$

is called a *D.G. near-ring homomorphism* if $S\theta \subseteq U$. Clearly, any near-ring epimomorphism $\theta : (R, S) \longrightarrow (T, U)$ is a D.G. near-ring homomorphism.

Note that a semigroup homomorphism $\theta: S \longrightarrow U$ is a D.G. nearring homomorphism if it is a group homomorphism from (R, +) to (T, +) ([5], [6]).

For any group G, M(G)-group G and $M_0(G)$ -group G are strongly monogenic which are appeared in Pilz [9].

For the remainder concepts and results on near-rings and R-groups, we refer to Meldrum [8], and Pilz [9].

2. Some results of faithful and related *R*-groups

There is a module like concept as follows: Let (R, S) be a D.G. near-ring. Then an additive group G is called a D.G. (R, S)-group if there exists a D.G. near-ring homomorphism

$$\theta: (R,S) \longrightarrow (M(G), End(G)) = E(G)$$

such that $S\theta \subseteq End(G)$. If we write xr instead of $x(\theta_r)$ for all $x \in G$ and $r \in R$, then an D.G (R, S)-group is an additive group G satisfying the following conditions:

$$x(rs) = (xr)s$$

 and

$$x(r+s) = xr + xs,$$

for all $x \in G$ and all $r, s \in R$,

$$(x+y)s = xs + ys,$$

for all $x, y \in G$ and all $s \in S$.

Such a homomorphism θ is called a *D.G. representation* of (R, S) on *G*. This D.G. representation is said to be *faithful* if $Ker\theta = \{0\}$. In this case, we also say that *G* is a *faithful D.G* (R, S)-group.

Let R be a near-ring and let G be an R-group. If there exists an x in G such that G = xR, that is, $G = \{xr \mid r \in R\}$, then G is called a *monogenic* R-group and the element x is called a *generator* of G, more specially, if G is monogenic and for each $x \in G$, xR = o or xR = G, then G is called a *strongly monogenic* R-group. It is clear that $G \neq 0$ if and only if $GR \neq 0$ for any monogenic or strongly monogenic R-group G.

LEMMA 2.1. Let R be a near-ring and G an R-group. Then we have the basic concepts:

- (1) If I is a right ideal of R, then $IR_0 \subseteq I$.
- (2) If A is an R-ideal of G, then A is an R_0 -subgroup of G.

From this useful lemma, we obtain the following several properties.

PROPOSITION 2.2. For a near-ring R, the following are equivalent:

(1) R is a zero symmetric near-ring;

(2) Every right ideal of R is an R-subgroup of R.

Proof. (1) \implies (2) is obtained from Lemma 2.1 (1).

(2) \implies (1) Suppose that every right ideal of R is an R-subgroup of R. Since 0 is a right ideal of R, 0 is an R-subgroup of R. Thus 0R = 0. This implies that $R = R_0$.

LEMMA 2.3 ([9]). For an R-group G, we have the following.

- (1) For any x in G, xR is an R-subgroup of G.
- (2) For any *R*-subgroup A of G, we have that $oR = oR_c \subseteq A$.

In Lemma 2.3 (2), oR is the smallest *R*-subgroup of *G*, so throughout this paper, we will write that

$$oR = oR_c =: \Omega.$$

We note that if R is zero symmetric, then $\Omega = \{o\} =: o$, and $\Omega = xR_c$ for all $x \in G$.

From Lemma 2.3 (2), we define the following concepts: An R-group G is called *simple* if G has no non-trivial ideal, that is, G has no ideals except o and G. Similarly, we can define simple nearring as ring case Also, R-group G is called R-simple if G has no R-subgroups except Ω and G.

We can explain the previous concepts elementwise: for example, a subgroup A of G such that $ar \in A$ for all $a \in A, r \in R$, is an *R*-subgroup of G, and an *R*-ideal of G is a normal subgroup N of Gsuch that

$$(x+g)a - ga \in N$$

for all $x \in N$, $g \in G$ and $a \in R$ (Meldrum [8]).

LEMMA 2.4. For an R-group G and a subgroup A of G, we have the following:

(1) A is an R-ideal of G if and only if A is an R_0 -ideal of G.

(2) A is an R-subgroup of G if and only if A is an R_0 -subgroup of G and $\Omega \subseteq A$.

Proof. (1) Necessity is obvious. Suppose A is an R_0 -ideal of G. Let $a \in A$, $x \in G$ and $r \in R$. Then since $R = R_0 \oplus R_c$, we rewrite that r = s + t, where $s \in R_0$ and $t \in R_c$. Thus we have

$$(a+x)r - xr = (a+x)(s+t) - x(s+t) = (a+x)s + (a+x)t - xt - xs.$$

Here, since $t \in R_c$, (a+x)t - xt = t - t = 0 so that $(a+x)r - xr = (a+x)s - \bar{xs}$. Also since $s \in R_0$ and A is an R_0 -ideal of G, $(a+x)s - xs \in A$, that is $(a+x)r - xr \in A$. Consequently, A is an R-ideal of G.

(2) This statement can be proved as a similar method of the proof of (1). \Box

Lemma 2.1(2) and Lemma 2.4 imply the following proposition.

PROPOSITION 2.5. For an *R*-group *G* with $\Omega \neq o$, we have the following:

- (1) $G = \Omega$ if and only if G is strongly monogenic.
- (2) R_0 -simplicity implies simplicity for G.

LEMMA 2.6 ([7]). Let (R, S) be a D.G. near-ring. Then all R-subgroups and all R-homomorphic images of a (R, S)-group are also (R, S)-groups.

Let G be an R-group and K, K_1 and K_2 be subsets of G. Define

$$(K_1:K_2):=\{a\in R; K_2a\subseteq K_1\}.$$

We abbreviate that for $x \in G$

$$({x} : K_2) =: (x : K_2).$$

Similarly for $(K_1 : x)$. (0 : K) is called the annihilator of K, sometimes denoted it by A(K). Easily, we can drive that G is a faithful R-group, that is, R acts faithfully on G if $A(G) = \{0\}$, that is, $(0:G) = \{0\}$.

LEMMA 2.7 ([3]). Let G be an R-group and K_1 and K_2 subsets of G. Then we have the following conditions:

- (1) If K_1 is a normal subgroup of G, then $(K_1 : K_2)$ is a normal subgroup of a near-ring R.
- (2) If K_1 is an R-subgroup of G, then $(K_1 : K_2)$ is an R-subgroup of R as an R-group.
- (3) If K_1 is an R-ideal of G and K_2 is an R-subset of G, then $(K_1:K_2)$ is a two-sided ideal of R.

Proof. (1) and (2) are proved by Pilz [9] and Meldrum [8]. Now, we prove only (3) : Using the condition (1), $(K_1 : K_2)$ is a normal subgroup of R. Let $a \in (K_1 : K_2)$ and $r \in R$. Then

$$K_2(ra) = (K_2r)a \subseteq K_2a \subseteq K_1,$$

also, since K_2 is an *R*-subset of $G, K_2r \subseteq K_2$ we have $ra \in (K_1 : K_2)$. Whence $(K_1 : K_2)$ is a left ideal of *R*.

Next, let $r_1, r_2 \in R$ and $a \in (K_1 : K_2)$. Then

$$k\{(a+r_1)r_2-r_1r_2\}=(ka+kr_1)r_2-kr_1r_2\in K_1$$

for all $k \in K_2$, since $K_2 a \subseteq K_1$ and K_1 is an ideal of G. Thus $(K_1 : K_2)$ is a right ideal of R. Consequently, $(K_1 : K_2)$ is a two-sided ideal of R.

COROLLARY 2.8 ([8], [9]). Let R be a near-ring and G an R-group.

- (1) For any $x \in G$, (0:x) is a right ideal of R.
- (2) For any R-subset K of G, (0:K) is a two-sided ideal of R.
- (3) For any subset K of G, $(0:K) = \bigcap_{x \in K} (0:x)$.

REMARK 2.9. For any R-group homomorphism $f: G \longrightarrow T$, we have $(0:G) \subseteq (0:f(G))$. So every momomorphic image of a faithful R-group is also faithful. Moreover, for any R-group isomorphism $f: G \longrightarrow T$, we have (0:G) = (0:T). In this case, G is faithful iff T is faithful.

The following statement can be proved easily, but it is important later.

LEMMA 2.10 [9]. Let G be a faithful R-group. Then we have the following conditions:

- (1) If (G, +) is abelian, then (R, +) is abelian.
- (2) If G is distributive, then R is distributive.

From this Lemma, we get the following proposition:

PROPOSITION 2.11. If G is a distributive abelian faithful R-group, then R is a ring.

PROPOSITION 2.12. Let R be a near-ring and G an R-group. Then we have the following conditions:

- (1) A(G) is a two-sided ideal of R. Moreover G is a faithful R/A(G)-group.
- (2) For any $x \in G$, we get $xR \cong R/(0:x)$ as R-groups.

Proof. (1) By Corollary 2.8 and Lemma 2.7, A(G) is a two-sided ideal of R. We now make G an R/A(G)-group by defining, for $x \in R$, $A(G) + r \in R/A(G)$, by x(A(G) + r) = xr. If A(G) + r = A(G) + s, then $r - s \in A(G)$ hence x(r - s) = 0 for all x in G, that is, xr = xs. This tells us that

$$x(A(G) + r) = xr = xs = x(A(G) + s)$$

Thus the action of R/A(G) on G has been shown to be well defined. The verification of the structure of an R/A(G)-group is a routine triviality Finally, to see that G is a faithful R/A(G)-group, we note that if x(A(G) + r) = 0 for all $x \in G$, then by the definition of R/A(G)-group structure, we have xr = 0. Hence $r \in A(G)$, that is,

$$A(G) + r = A(G)$$

This says that only the zero element of R/A(G) annihilates all of G. Thus G is a faithful R/A(G)-group.

(2) For any $x \in G$, clearly xR is an *R*-subgroup of *G*. The map $\phi: R \longrightarrow xR$ defined by $\phi(r) = xr$ is an *R*-group ephimorphism, so

that from the isomorphism theorem for *R*-groups, since the kernel of ϕ is (0:x), we deduce that

$$xR \cong R/(0:x)$$

as R-groups.

PROPOSITION 2.13. If R is a near-ring and G an R-group, then R/A(G) is isomorphic to a subnear-ring of M(G).

Proof. Let $a \in R$. We define $\tau_a : G \longrightarrow G$ by $x\tau_a = xa$ for each $x \in G$. Then τ_a is in M(G). Consider the mapping $\phi : R \longrightarrow M(G)$ defined by $\phi(a) = \tau_a$. Then obviously, we see that

$$\phi(a+b)=\phi(a)+\phi(b) \ and \ \phi(ab)=\phi(a)\phi(b),$$

that is, ϕ is a near-ring homomorphism from R to M(G).

Next, we must show that $Ker\phi = A(G)$: Indeed, if $a \in Ker\phi$, then $\tau_a = 0$, which implies that $Ga = G\tau_a = 0$, that is, $a \in A(G)$. On the other hand, if $a \in A(G)$, then by the definition of A(G), Ga = 0hence $0 = \tau_a = \phi(a)$, this implies that $a \in Ker\phi$. Therefore from the first isomorphism theorem for *R*-groups, the image of *R* is a nearring isomorphic to R/A(G). Consequently, R/A(G) is isomorphic to a subnear-ring of M(G).

COROLLARY 2.14. If G is a faithful R-group, then R is embedded in M(G). Furthermore, G is a faithful R-group iff G is both faithful R_0 -group and faithful R_c -group.

PROPOSITION 2.15. If (R, S) is a D.G. near-ring, then every monogenic R-group is an (R, S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then the map $\phi : r \mapsto xr$ is an R-group epimorphism from R to G. We see that by Proposition 2.12 (2),

$$G \cong R/A(x),$$

where $A(x) = (0:x) = Ker\phi$. From Lemma 2.6, we obtain that G is an (R, S)-group.

LEMMA 2.16. Let G be an R-group. Then G is faithful iff for each $x \in G$, $R \cong xR$.

Proof. Suppose G is a faithful R-group. Then we can define the map $f: a \mapsto xa$ which is an R-group epimorphism from R to xR as R-groups for each $x \in G$.

To show that f is one-one, if f(a) = f(b) for a, $b \in R$, then xa = xb, that is, x(a - b) = 0 for all $x \in G$. This implies that $a - b \in \bigcap_{x \in G} (0 : x)$, which is equal to (0 : G) = A(G) from Corollary 2.8 (3). Since G is faithful, a - b = 0. Hence for all $x \in G$, $R \cong xR$.

Conversely, assume the condition that $R \cong xR$ for all $x \in G$. Consider the map $f: R \longrightarrow xR$ given by $a \longmapsto xa$ is an *R*-group isomorphism. To show that *G* is faithful, take any element $a \in A(G)$, that is, Ga = 0. This implies that for all $x \in G$, xa = 0, that is, f(a) = 0. Since *f* is an *R*-group isomorphism, a = 0. Consequently, *G* is faithful.

The following statement can be easily proved from Lemma 2.16 and Corollary 2.14.

PROPOSITION 2.17. Let A be a right R-subgroup of a near-ring R. Then the following statements are equivalent:

- (1) A is faithful;
- (2) A is a base (of equality);
- (3) A is embedded in M(A);
- (4) For all $x \in G$, $R \cong xR$.

The following statement is a generalization of Proposition 2.11.

PROPOSITION 2.18 [3]. Let (R, S) be a D.G. near-ring. If G is an abelian faithful D.G. (R, S)-group, then R is a ring.

As an immediate consequence of Proposition 2.18, we have the following important corollary.

COROLLARY 2.19. Let (R, S) be an abelian D.G. near-ring. Then R is a ring.

LEMMA 2.20 ([2], [4]). If R is a zero symmetric near-ring and A, B, K are R-ideals of an R-group G, then we have the following R-group:

$$G' := [(A + K) \cap (B + K)]/[(A \cap B) + K]$$

which is abelian, and for any $x, y \in G'$, and $r \in R$, we have (x+y)r = xr + yr.

PROPOSITION 2.22. Let R be a zero symmetric near-ring and G' be an R-group as in the above lemma. Then G' is a faithful R/(0:G')-group. Moreover, R' := R/(0:G') becomes a ring.

Proof. We can define the scalar multiplition as following: For I = (o:G'),

$$G' \times R/I \longrightarrow G'$$

defined by $(x, I + a) \mapsto xa$, for all $x \in G'$ and all $I + a \in R/I$. Since G'I = o, this scalar multiplition is well defined, and it is easily proved that G' is faithful R/I-group. Hence the Lemma 2.10 (1) and (2) implies that R/(o:G') = R/I becomes a ring.

PROPOSITION 2.22. Let G be a faithful monogenic R-group with generator x, where R is a zero symmetric near-ring. If I and J are right ideals of R and $I \cap J \subseteq (0:x)$, then R is a ring.

Proof. From Proposition 2.12 (2) and 2.20, we have that

$$G = xR \cong R/(0:x) = [(I+(0:x) \cap J+(0:x)]/[(I \cap J)+(0:x)] = G'.$$

On the other hand, since G is faithful, by the definition, we see that

$$(0:G') \cong (0:G) = A(G) = 0.$$

Consequently, the Lemma 2.22 implies that R is a ring.

REFERENCES

- [1] F. W Anderson and K R Fuller, Rings and categories of modules, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
- [2] G Betsch, Primitive near-rings, Math Z. 130 (1973), 351-361.
- [3] Y. U Cho, On faithful monogenic R-groups and related substructures, J. of Natural Science Institute at Silla Univ. 11 (2002), 27-43.
- [4] K. Kaarh, Primitivity and simplicity of non-zero symmetric near-rings, Communications in Algebra 26(11) (1998), 3691-3708
- [5] C G. Lyons and J D P. Meldrum, Characterizing series for faithful D.G near-rings, Proc. Amer. Math. Soc 72 (1978), 221-227
- [6] S. J. Mahmood and J D. P. Meldrum, D G near-rings on the infinite dihedral groups, Near-rings and Near-fields (1987), Elsevier Science Publishers B.V (North-Holland), 151-166
- [7] J D P. Meldrum, Upper faithful D G near-rings, Proc. Edinburgh Math Soc. 26 (1983), 361-370
- [8] J. D. P. Meldrum, Near-rings and their links with groups, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.
- [9] G. Pilz, *Near-rings*, North Holland Publishing Company, Amsterdam, New York, Oxford, 1983

Department of Mathematics College of Natural Sciences Silla University, Pusan 617-736, Korea *E-mail*: yucho@silla.ac.kr yucho516@yahoo.co.kr