Swelling Controlled Delivery of Antibiotic from a Hydrophilic Macromolecular Matrix with Hydrophobic Moieties

  • Shukla, Sandeep (Department of Chemistry, Government Autonomous Science College) ;
  • Bajpai, Anil Kumar (Department of Chemistry, Government Autonomous Science College) ;
  • Bajpai, Jaya (Department of Chemistry, Government Autonomous Science College)
  • Published : 2003.08.31

Abstract

A hydrophilic macromolecular network containing hydrophobic moieties has been prepared by free radical copolymerization of acrylamide and styrene in the presence of poly(vinyl alcohol) (PVA) and its potential as controlled drug delivery carrier was evaluated with tetracycline as a model antibiotic drug. The amount of drug was assayed spectrophotometrically. The network was characterized by optical microscopy, infra-red spectroscopy and structural parameters such as average molecular weight between cross1inks ($M_c$), cross1ink density (q) and number of elastically effective chains ($V_e$) were evaluated. It was found that with increasing concentration of PVA, ST and MBA in the hydrogel, the release rate initially increases but after definite concentrations of the above components the release rate falls. In the case of AM, release rate constantly decreases with increasing AM concentration in the hydrogel.

Keywords

References

  1. G. Chen and A. S. Hoffman, Nature, 49, 373 (1995)
  2. M. J. Snowden, B. Z. Chowdhary, B. Vincent, and G. E. Morris, J. Chem. Soc. Faraday Trans., 92, 5013 (1996)
  3. Y. H. Bae, T. Okano, and S. W. Kim, J, Polym. Sci., Polym. Phys. Ed., 28, 923 (1990)
  4. R. A Siegel and B, A. Firestone, Macromolecules, 21, 3294 (1988)
  5. K. Kajwara and S, B. Rossurphy, Nature, 355, 208 (1992)
  6. W. Paul and C. P. Sharma, J. Appl. Polym. Sci., 57, 1447 (1995)
  7. N. A. Peppas, Curr. Opin. Colloid Interface Sci., 2, 531 (1997)
  8. T. W. Atkins and S, J. Peacock, J. Microencapsulation. 13, 709 (1997)
  9. E. R. Kengy, J, Macromol. Sci. Rev. Macromol. Chem. Phys., C38, 365 (1998)
  10. J. L. Cleland, L. M. Sanders, and R. W. Hendren (Eds.), in Pharmaceutical Biotechnology, Protein delivery, Physical systems. Plenum Press, New York, 1997, Vol. 10, pp 1-43
  11. R. M. Palmer, T. L. P. Watts, and R. F. Wilson, J. Clin. Periodont., 23, 670 (1996)
  12. S. D. Bruch. Controlled Drug Delivery, CRC Press, Boca Raton. FLA, 1983, Vol. I & II
  13. F. D. Snell and C. T. Snell, in Colorimetric Methods of Analvsis, Van Nostrand Reinhold Co., 1971, Vol.VI AAA
  14. N. A. Peppas and N. M. Franson, J. Polym. Sci., Polym. Phys. Ed., 21, 983 (1983)
  15. R. W. Krosmeyer and N. A. Peppas, J. Membr. Sci., 9, 211 (1981)
  16. C. I. Reinhart and N. A. Peppas, J. Membr. Sci., 18, 227 (1984)
  17. Z. Y. Ding, J. J. Akinois, and R. Saloyev, J. Polym. Sci., Polym. Phys., 20, 1035 (1991)
  18. J. Rosiak, K. Burczak, T. Czokynoka, and W. Pekala, Radiat. Phys. Chem., 22, 917 (1983)
  19. H. H. Hooper, J. P. Baker, H. W. Blanch, and J. M. Prausnitz, Macromolecules, 23, 1096 (1983)
  20. N. A. Peppas, Pharm. Acta Helv., 60, 110 (1985)
  21. P. Colombo, A. Gazzaniga, U. Conte, M. E. Sangalli, and A. L. Manna, Proc. Int. Symp. Control Release Bioact Mater., 14, 83 (1987)
  22. G. R. Davison III and N. A. Peppas, J. Control. Release, 3, 243 (1986)
  23. R. A. Grinsted, L. Clark, and J. L. Koenig, Macromolecules, 25, 1235 (1992)
  24. S. W. Kim, Y. H. Bae, and T. Okano, Pharmaceut Res., 9, 283 (1992)
  25. N. A. Peppas and A. R. Khare, Adv. Drug Deliv. Rev., 11, 1 (1993)
  26. Co, Xu and H. Sunada, Chem. Pharm. Bull., 43, 483 (1995)
  27. S. S. Shah, M. G. Kulkarni, and R. A. Mashelkar, J. Appl. Polym. Sci., 41, 2437 (1990)
  28. M. E. McNeill and N. B. Graham, J. Biomater. Sci. Polym. Edn., 4, 305 (1993)
  29. M. E. McNeill and N. B. Graham, J. Biomater. Sci. Polym. Edn., 5, 111(1993)