DOI QR코드

DOI QR Code

Cell Cycle and Cancer

  • Park, Moon-Taek (Laboratory of Radiation Effect, Radiological & Medical Research Center, Korea Institute of Radiological & Medical Sciences) ;
  • Lee, Su-Jae (Laboratory of Radiation Effect, Radiological & Medical Research Center, Korea Institute of Radiological & Medical Sciences)
  • Published : 2003.01.31

Abstract

Cancer is frequently considered to be a disease of the cell cycle. As such, it is not surprising that the deregulation of the cell cycle is one of the most frequent alterations during tumor development. Cell cycle progression is a highly-ordered and tightly-regulated process that involves multiple checkpoints that assess extracellular growth signals, cell size, and DNA integrity. Cyclin-dependent kinases (CDKs) and their cyclin partners are positive regulators of accelerators that induce cell cycle progression; whereas, cyclin-dependent kinase inhibitors (CKIs) that act as brakes to stop cell cycle progression in response to regulatory signals are important negative regulators. Cancer originates from the abnormal expression of activation of positive regulators and functional suppression of negative regulators. Therefore, understanding the molecular mechanisms of the deregulation of cell cycle progression in cancer can provide important insights into how normal cells become tumorigenic, as well as how cancer treatment strategies can be designed.

Keywords

References

  1. Adams, P. D. (2001) Regulation of the retinoblastoma tumor suppressor protein by cyclin/CDKs. Biochim. Biophys. Acta 1471, 123- 133.
  2. Adnane, J., Shao, Z. and Robbins, P. D. (1995) The retinoblastoma susceptibility gene product represses transcription when directly bound to the promoter. J. BioI. Chem. 270, 8837-8843. https://doi.org/10.1074/jbc.270.15.8837
  3. Cameron, E. E., Baylin, S. B. and Hennan, J. G. (1999) p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood 94, 2445-2451.
  4. Catzavelos, C., Bhattacharya, N., Ung, Y. C., Wilson, J. A., Roncari, L. and Sandhu, C. (1997) Decreased levels of the cell cycle inhibitor p27Kipl protein: prognostic implications in primary breast cancer. Nature Med. 3, 227-230. https://doi.org/10.1038/nm0297-227
  5. Chen, Y. N., Shanna, S. K., Ramsey, T. M., Jiang, L., Martin, M. S., Baker, K., Adams, P. D., Bair, K. W. and Kaelin, W. G. Jr. (1999) Selective killing of transfonned cells by cyclin/cyclin- dependent kinase 2 antagonists. Proc. Natl. Acad. Sci. USA 96, 4325-4329. https://doi.org/10.1073/pnas.96.8.4325
  6. Chim, C. S. M., Liang, R., Tam, C. Y. and Kwong, Y. L. (2001) Methylation of p15 and p16 genes in acute promyeIocytic leukemia: potential diagnostic and prognostic significance. J. Clin. Oncol. 19, 2033-2040. https://doi.org/10.1200/JCO.2001.19.7.2033
  7. Chow, K. N. and Dean, D. C. (1996) (1996) Domains A and B in the Rb pocket interact to form a transcriptional repressor motif. Mol. Cell. Biol. 16, 4862-4868. https://doi.org/10.1128/MCB.16.9.4862
  8. Chow, K. N., Starostik, P. and Dean, D. C. (1996). The Rb family contains a conserved cyclin-dependent-kinase-regulated transcriptional repressor motif. Mol. Cell. BioI., 16, 7173-7181. https://doi.org/10.1128/MCB.16.12.7173
  9. Cordon-Cardo, C., Koff, A., Drobnjak, M., Capodieci, P., Osman, I., and Millard, S. S. (1998) Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J. Natl. Cancer Inst. 90, 1284-1291. https://doi.org/10.1093/jnci/90.17.1284
  10. Damiens, E., Baratte, B., Marie, D., Eisenbrand, G. and Meijer, L. (2000) Anti-mitotic properties of indirubin-3'-monoxime, a CDK/GSK-3 inhibitor: induction of endoreplication following prophase arrest. Oncogene 20, 3786-3797. https://doi.org/10.1038/sj.onc.1204503
  11. Doki. Y., Imoto, M., Han, E. K. -H., Sgambato, A. and Weinstein, I. B. (1997) Increased expression of the $p27^{kip1}$ protein in human esophageal cancer cell lines that over-express cyelin D1. Carcinogenesis 18, 11391148. https://doi.org/10.1093/carcin/18.6.1139
  12. Edamatsu, H., Gau, C. L., Nemoto, T., Guo, L. and Tamanoi, F. (2000) Cdk inhibitors, roscovitine and olomoucine, synergize with famesyl transferase inhibitor (FTI) to induce efficient apoptosis of human cancer cell lines. Oncogene 19, 30593068. https://doi.org/10.1038/sj.onc.1203625
  13. Ekholm. S. Y. and Reed, S. I. (2000) Regulation of $G_{1}$ cyelin- dependent kinases in the mammalian cell cycle. Curr. Opin. Cell BioI. 12, 676-684. https://doi.org/10.1016/S0955-0674(00)00151-4
  14. Esposito, Y., Baldi, A., De Luca, A., Groger, A. M., Loda, M., and Giordano, G. G. (1997) Prognostic role of the cyelin- dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res. 57, 3381-3385.
  15. Florenes, V. A.. Maelandsmo, G. M., Kerbel, R. S., Slingerland, J. M., Nesland, J. M. and Holm, R. (1998) Protein expression of the cell-cycle inhibitor p27Kip1in malignant melanoma: inverse correlation with disease-free survival. Am. J. Pathol. 153, 305-312. https://doi.org/10.1016/S0002-9440(10)65572-1
  16. Han, E. K. -H., Rubin, M. A., Lim, J. T., Arber. N., Xing, W. -Q. and Weinstein, I. B. (1998) Cyelin D1 expression in human prostate cell lines and primary tumors. The Prostate, 35, 95101. https://doi.org/10.1002/(SICI)1097-0045(19980501)35:2<95::AID-PROS2>3.0.CO;2-F
  17. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57-70, https://doi.org/10.1016/S0092-8674(00)81683-9
  18. Hannon, G. J. and Beach, D. (1994) p151INK4B is a potential effector of TGF-beta-induced cell cyele arrest. Nature 371, 257-261. https://doi.org/10.1038/371257a0
  19. Harbour, J. and Dean, D. (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393-2409. https://doi.org/10.1101/gad.813200
  20. Heichman, K. A. and Roberts, J. M. (1994) Rules to replicate by. Cell 79, 557-562. https://doi.org/10.1016/0092-8674(94)90541-X
  21. Hinds, P. W., Dowdy, S. F., Eaton, E. N., Arnold, A. and Weinberg, R. A. (1994) Function of a human cyelin gene as an oncogene. Proc. Natl. Acad. Sci. USA 91, 709-713. https://doi.org/10.1073/pnas.91.2.709
  22. Hunter, T. and Pines, J. (1994) Cyelins and cancer. II: Cyelin D and CDK inhibitors come of age. Cell 79, 573-582. https://doi.org/10.1016/0092-8674(94)90543-6
  23. Hwang, A. and Muschel, R. J. (1998) Radiation and the G2 phase of the cell cycle. Radiat. Res. 150 (Suppl.), S52-S59. https://doi.org/10.2307/3579808
  24. Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu Q., Harshman, K., and Tavigian, S. V. (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436-440. https://doi.org/10.1126/science.8153634
  25. Kamb, A., Shattuck-Eidens, D., Eeles, R, Liu, Q., Gruis, N. A., and Ding, W. (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature Genet. 8, 23-26.
  26. King, R W., Jackson, P. K. and Kirschner, M. W. (1994) Mitosis in transition. Cell 79, 563-571. https://doi.org/10.1016/0092-8674(94)90542-8
  27. Loda, M., Cukor, B., Tam, S. W., Lavin, P., Fiorentino, M., Draetta, G. F., Jessup, J. M. and Pagano, M. (1997) Increased proteasome-dependent degradation of the cyelin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med. 3, 231-234. https://doi.org/10.1038/nm0297-231
  28. Lovec, H., Sewing, A., Lucibello, F. C., Muller, R. and Moroy, T. (1994) Oncogenic activity of cyelin D1 revealed through cooperation with Ha-ras: link between cell cyele control and malignant transformation. Oncogene 9, 323-326.
  29. Malumbres, M. and Barbacid, M. (2001) To cycle or not to cyele: a critical decision in cancer. Nat Rev Cancer 3, 222-31.
  30. Matushansky, I., Radparvar, F. and Skoultchi, A. I. (2000) Reprogramming leukemic cells to terminal differentiation by inhibiting specific cyclin-dependent kinases in G1. Proc. Natl. Acad. Sci. USA 97, 14317-14322. https://doi.org/10.1073/pnas.250488697
  31. Morgan, D. O. (1995) Principles of CDK regulation. Nature 374, 131-134. https://doi.org/10.1038/374131a0
  32. Morgan, D. O. (1997) Cyelin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. BioI. 13, 261-291. https://doi.org/10.1146/annurev.cellbio.13.1.261
  33. Mori, M., Mimori, K, Shiraishi, T., Tanaka, S., Ueo, H. and Sugimachi, K. (1997) p27 expression and gastric carcinoma. Nature Med. 3, 593. https://doi.org/10.1038/nm0697-593
  34. Nguyen, T. T., Mohrbacher, A. F., Tsai, Y. C., Groffen, J., Heisterkamp, N. and Nichols, P. W. (2000) Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood 95, 2990-2992.
  35. Nigg, E. A. (1996) Cyelin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cyele control? Curr. Opin. Cell BioI. 8, 312-317. https://doi.org/10.1016/S0955-0674(96)80003-2
  36. Nobori, T., Miura, K., Wu, D. J., Lois, A., Takabayashi, K, and Carson, D. A. (1994) Deletions of the cyelin-dependent kinase- 4 inhibitor gene in multiple human cancers. Nature 368, 753- 756. https://doi.org/10.1038/368753a0
  37. Pardee, A. B. (1989) G1 events and regulation of cell proliferation. Science 246, 603-608. https://doi.org/10.1126/science.2683075
  38. Polyak, K, Lee, M. H., Erdjument-Bromage, H., Koff, A., Roberts, J. M., Tempst, P. and Massague, J. (1994) Cloning of p27Kip1, a cyelin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59-66. https://doi.org/10.1016/0092-8674(94)90572-X
  39. Porter, P. L., Malone, K. E., Heagerty, P. J., Alexander, G. M., Gatti, L. A. and Pirpo, E. J. (1997) Expression of cell-cyele regulators p27Kip1 and cyelin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med. 3, 222-225. https://doi.org/10.1038/nm0197-22
  40. Raleigh, J. M. and O'Connell, M. J. (2000) The G2 DNA damage checkpoint targets both Weel and Cdc25. J. Cell Sci. 113, 1727-1736.
  41. Rocco, J. W. and Sindransky, D. (2001) p16(MTS-1/CDKN2/ INK4a) in cancer progression. Exp. Cell Res. 264, 42-55. https://doi.org/10.1006/excr.2000.5149
  42. Ruas, M. and Peters, G. (1998) The $p16^{INK4a}$/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, 115-177.
  43. Sellers, W. R., Rodgers, J. W. and Kaelin, W. G. (1995). A potent transrepression domain in the retinoblastoma protein induces a cell cyele arrest when bound to E2F sites. Proc. Nat. Acad. Sci. USA 92, 11544-11548. https://doi.org/10.1073/pnas.92.25.11544
  44. Serrano, M., Hannon, G. J. and Beach, D. (1993) A new regulatory motif in cell-cyele control causing specific inhibition of cyelin D/CDK4. Nature 366, 704-707. https://doi.org/10.1038/366704a0
  45. Sgambato, A., Flamini, G., Cittadini, A. and Weinstein, l.B. (1998) Abnormalities in cell cyele control in cancer and their clinical implications. Tumori 84, 421433.
  46. Sgambato, A. A., Cittadini, A. and Weinstein, I. B. (2000) Multiple functions of $p27^{kip1}$ and its alterations in tumor cells. A review. J. Cell. Physiol. 183, 18-27. https://doi.org/10.1002/(SICI)1097-4652(200004)183:1<18::AID-JCP3>3.0.CO;2-S
  47. Sherr, C. J. (1993) Mammalian $G_{1}$ cyelins. Cell 73, 1059-1065..
  48. Sherr, C. J. and Roberts, J. M. (1995) Inhibitions of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 114-1163.
  49. Sherr, C. J. and Roberts, J. M. (1999) Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501-1512. https://doi.org/10.1101/gad.13.12.1501
  50. Sherr, C. J. (1994) G1 phase progression: cycling on cue. Cell 79, 551-555. https://doi.org/10.1016/0092-8674(94)90540-1
  51. Sherr, C. J. (2000) Cancer cell cyele revisited. Cancer Res. 60, 3689-3695.
  52. Soni, R., O'Reilly, T., Furet. P., Muller, L., Stephan, C., Zumstein-Mecker, S., Fretz, H., Fabbro, D. and Chaudhuri, B. (2001) Selective in vivo and in vitro effects of a small molecule inhibitor of cyelin-dependent kinase 4. J. Natl. Cancer lnst. 21, 436-446.
  53. Toyoshima, H. and Hunter, T. (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67-74. https://doi.org/10.1016/0092-8674(94)90573-8
  54. Vidal, A. and Koff, A. (2000) Cell-cycle inhibitors: three families untied by a common cause. Gene 247, 1-15. https://doi.org/10.1016/S0378-1119(00)00092-5
  55. Weinstein, I. B., Begemann, M., Zhou, P., Han, E. K. -H., Sgambato, A., Doki, Y., Arber, N., Ciaparrone, M. and Yamamoto, H. (1997) Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin. Cancer Res. 3, 2696-2702.
  56. Weinstein, I. B. and Zhou, P. (1997) Defects in cell cyele control genes in human cancer: in Encyclopedia of Cancer, Bertino, J. R. (ed.), pp. 256-267, Academic Press, New York, New York.
  57. Weintraub, S. J., Chow, K. N., Luo, R. X., Zhang, S. H., He, S. and Dean, D. C. (1995) Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375, 812-815. https://doi.org/10.1038/375812a0
  58. White, R. J., Trouche, D., Martin, K, Jackson, S. P. and Kouzarides, T. (1996) Repression of RNA polymerase III transcription by the retinoblastoma protein. Nature 382, 88-90. https://doi.org/10.1038/382088a0
  59. Wong, I. H., Ng, M. H., Huang, D. P. and Lee, J. C. (2000) Aberant p15 promoter methylation in adult and childhood acute leukemia of nearly all morphologic subtypes: potential prognostic implications. Blood 95, 1942-1949.
  60. Xiong, Y., Connolly, T., Futcher, B., and Beach, D. (1991) Human D-type cyclin. Cell 65, 691-699. https://doi.org/10.1016/0092-8674(91)90100-D
  61. Yatabe, Y., Masuda, A., and Koshikawa, T. (1997) Increased proteasome-dependent degradation of the cyelin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med. 3,231-234. https://doi.org/10.1038/nm0297-231
  62. Zhan, Q., Antinore, M. J., Wang, X. W., Carrier, F., Smith, M. L., Harris, C. C. and Fomace, A. J. Jr. (1999) Association with Cdc2 and inhibition of Cdc2/cyclinB1 kinase activity by the P53-regulated protein Gadd45. Oncogene 18, 2892-2900. https://doi.org/10.1038/sj.onc.1202667

Cited by

  1. Extraribosomal function of metallopanstimulin-1: reducing paxillin in head and neck squamous cell carcinoma and inhibiting tumor growth vol.126, pp.3, 2010, https://doi.org/10.1002/ijc.24791
  2. Genome-wide identification of cancer-related polyadenylated and non-polyadenylated RNAs in human breast and lung cell lines vol.56, pp.6, 2013, https://doi.org/10.1007/s11427-013-4485-1
  3. RWRMDA: predicting novel human microRNA–disease associations vol.8, pp.10, 2012, https://doi.org/10.1039/c2mb25180a
  4. Polyphyllin D induces apoptosis in K562/A02 cells through G2/M phase arrest vol.66, pp.5, 2014, https://doi.org/10.1111/jphp.12188
  5. Identification of Candidate Cyclin-dependent kinase 1 (Cdk1) Substrates in Mitosis by Quantitative Phosphoproteomics vol.15, pp.7, 2016, https://doi.org/10.1074/mcp.M116.059394
  6. Anticancer and Multidrug Resistance-Reversal Effects of Solanidine Analogs Synthetized from Pregnadienolone Acetate vol.19, pp.2, 2014, https://doi.org/10.3390/molecules19022061
  7. Gold from the sea: Marine compounds as inhibitors of the hallmarks of cancer vol.29, pp.5, 2011, https://doi.org/10.1016/j.biotechadv.2011.02.002
  8. (-)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells vol.32, pp.10, 2011, https://doi.org/10.1093/carcin/bgr171
  9. CD44/Cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients vol.53, pp.9, 2014, https://doi.org/10.1002/mc.22021
  10. Review: the Contribution of both Nature and Nurture to Carcinogenesis and Progression in Solid Tumours vol.9, pp.1, 2016, https://doi.org/10.1007/s12307-016-0183-4
  11. Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate vol.82, 2014, https://doi.org/10.1016/j.ejmech.2014.05.063
  12. Utilidad del análisis inmunohistoquímico de diversos marcadores moleculares en la caracterización del carcinoma papilar de tiroides con metástasis linfáticas iniciales vol.57, pp.4, 2010, https://doi.org/10.1016/j.endonu.2010.02.005
  13. Anti-tumour effects of elatol, a marine derivative compound obtained from red algaeLaurencia microcladia vol.64, pp.8, 2012, https://doi.org/10.1111/j.2042-7158.2012.01493.x
  14. Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB vol.14, pp.1, 2014, https://doi.org/10.1186/1472-6882-14-299
  15. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells vol.26, pp.8, 2015, https://doi.org/10.1097/CAD.0000000000000263
  16. Human Gene Control by Vital Oncogenes: Revisiting a Theoretical Model and Its Implications for Targeted Cancer Therapy vol.13, pp.12, 2012, https://doi.org/10.3390/ijms13010316
  17. Camellia sinensis in asymptomatic hyperuricemia: A meta-analysis of tea or tea extract effects on uric acid levels vol.57, pp.2, 2017, https://doi.org/10.1080/10408398.2014.889653
  18. MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a vol.37, pp.4, 2016, https://doi.org/10.1007/s13277-015-4292-3
  19. Overexpression of Glycogen Synthase Kinase-3 in Ovarian Carcinoma Cells With Acquired Paclitaxel Resistance vol.21, pp.3, 2011, https://doi.org/10.1097/IGC.0b013e31820d7366
  20. Knockdown ofGPR137,G Protein-coupled receptor 137, Inhibits the Proliferation and Migration of Human Prostate Cancer Cells vol.87, pp.5, 2016, https://doi.org/10.1111/cbdd.12704
  21. Relationships between cell cycle pathway gene polymorphisms and risk of hepatocellular carcinoma vol.22, pp.24, 2016, https://doi.org/10.3748/wjg.v22.i24.5558
  22. New approaches for modelling cancer mechanisms in the mouse vol.205, pp.2, 2005, https://doi.org/10.1002/path.1698
  23. Retinoic acid promotes Sertoli cell differentiation and antagonises activin-induced proliferation vol.377, pp.1-2, 2013, https://doi.org/10.1016/j.mce.2013.06.034
  24. Association of CCND1 overexpression with KRAS and PTEN alterations in specific subtypes of non-small cell lung carcinoma and its influence on patients’ outcome vol.36, pp.11, 2015, https://doi.org/10.1007/s13277-015-3620-y
  25. Closing the phenotypic gap between transformed neuronal cell lines in culture and untransformed neurons vol.174, pp.1, 2008, https://doi.org/10.1016/j.jneumeth.2008.06.031
  26. SDF-1/CXCR4 signal is involved in decreased expression ofp57kip2inde novoMDS patients vol.17, pp.4, 2012, https://doi.org/10.1179/1607845412Y.0000000005
  27. Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6791
  28. AICAR inhibits proliferation and induced S-phase arrest, and promotes apoptosis in CaSki cells vol.28, pp.12, 2007, https://doi.org/10.1111/j.1745-7254.2007.00675.x
  29. Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent Cdc2-tyr15 phosphorylation via ATM–Chk1/2–Cdc25C pathway vol.282, pp.2, 2015, https://doi.org/10.1016/j.taap.2014.11.003
  30. Expression of p21cip1, p27kip1, and p16INk4a Cyclin-Dependent Kinase Inhibitors in Papillary Thyroid Carcinoma: Correlation with Clinicopathological Factors vol.19, pp.3, 2008, https://doi.org/10.1007/s12022-008-9037-z
  31. Limited Redundancy in Phosphorylation of Retinoblastoma Tumor Suppressor Protein by Cyclin-Dependent Kinases in Acute Lymphoblastic Leukemia vol.169, pp.3, 2006, https://doi.org/10.2353/ajpath.2006.051137
  32. Proteomic snapshot of breast cancer cell cycle: G1/S transition point vol.13, pp.1, 2013, https://doi.org/10.1002/pmic.201200188
  33. MicroRNA-21 inhibits p57Kip2 expression in prostate cancer vol.13, pp.1, 2014, https://doi.org/10.1186/1476-4598-13-212
  34. P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1 vol.111, pp.8, 2008, https://doi.org/10.1182/blood-2007-09-113266
  35. Demethylating Agents in the Treatment of Cancer vol.3, pp.7, 2010, https://doi.org/10.3390/ph3072022
  36. Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell vol.30, pp.4, 2015, https://doi.org/10.7841/ksbbj.2015.30.4.175
  37. ATP-Noncompetitive Inhibitors of CDK-Cyclin Complexes vol.4, pp.1, 2009, https://doi.org/10.1002/cmdc.200800185
  38. Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cells in vitro vol.18, pp.2, 2013, https://doi.org/10.1007/s10495-012-0791-5
  39. Dentatin isolated from Clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: A bioassay-guided approach vol.145, pp.1, 2013, https://doi.org/10.1016/j.jep.2012.11.020
  40. Proteomic study reveals a functional network of cancer markers in the G1-Stage of the breast cancer cell cycle vol.14, pp.1, 2014, https://doi.org/10.1186/1471-2407-14-710
  41. Ethyl acetate extract fromGlycosmis parvaleaf induces apoptosis and cell-cycle arrest by decreasing expression of COX-2 and altering BCL-2 family gene expression in human colorectal cancer HT-29 cells vol.53, pp.4, 2015, https://doi.org/10.3109/13880209.2014.931442
  42. Licochalcone B inhibits growth of bladder cancer cells by arresting cell cycle progression and inducing apoptosis vol.65, 2014, https://doi.org/10.1016/j.fct.2013.12.030
  43. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells vol.36, pp.10, 2015, https://doi.org/10.1007/s13277-015-3477-0
  44. Green Tea and Bone Marrow Transplantation: From Antioxidant Activity to Enzymatic and Multidrug-resistance Modulation vol.56, pp.14, 2016, https://doi.org/10.1080/10408398.2013.826175
  45. Development of an in Vitro Assay for the Proteolytic Processing of the CDP/Cux Transcription Factor vol.36, pp.4, 2003, https://doi.org/10.5483/BMBRep.2003.36.4.390
  46. Novel dichlorophenyl urea compounds inhibit proliferation of human leukemia HL-60 cells by inducing cell cycle arrest, differentiation and apoptosis vol.30, pp.4, 2012, https://doi.org/10.1007/s10637-011-9711-8
  47. Pomegranate Juice Metabolites, Ellagic Acid and Urolithin A, Synergistically Inhibit Androgen-Independent Prostate Cancer Cell Growth via Distinct Effects on Cell Cycle Control and Apoptosis vol.2013, 2013, https://doi.org/10.1155/2013/247504
  48. Effects of Furanodiene on 95-D Lung Cancer Cells: Apoptosis, Autophagy and G1 Phase Cell Cycle Arrest vol.42, pp.01, 2014, https://doi.org/10.1142/S0192415X14500165
  49. E- and A-type cyclins as markers for cancer diagnosis and prognosis vol.3, pp.5, 2003, https://doi.org/10.1586/14737159.3.5.617
  50. Taspase1 cleaves MLL1 to activate cyclin E for HER2/neu breast tumorigenesis vol.24, pp.11, 2014, https://doi.org/10.1038/cr.2014.129
  51. The role of CDK1 siRNA interference in cell cycle and cell apoptosis vol.3, pp.4, 2009, https://doi.org/10.1007/s11684-009-0070-1
  52. Molecular Biomarkers for Prediction of Targeted Therapy Response in Metastatic Breast Cancer: Trick or Treat? vol.18, pp.1, 2017, https://doi.org/10.3390/ijms18010085
  53. Tumor necrosis factor superfamily member 13 is a novel biomarker for diagnosis and prognosis and promotes cancer cell proliferation in laryngeal squamous cell carcinoma vol.37, pp.2, 2016, https://doi.org/10.1007/s13277-015-4016-8
  54. Association of CDKN1B gene polymorphisms with susceptibility to breast cancer: a meta-analysis vol.40, pp.11, 2013, https://doi.org/10.1007/s11033-013-2751-8
  55. MECHANISMS OF ENDOCRINOLOGY: Cell cycle regulation in adrenocortical carcinoma vol.179, pp.2, 2018, https://doi.org/10.1530/EJE-17-0976
  56. Asymmetric microarray data produces gene lists highly predictive of research literature on multiple cancer types vol.11, pp.1, 2010, https://doi.org/10.1186/1471-2105-11-483
  57. Synergetic downregulation of 67 kDa laminin receptor by the green tea (Camellia sinensis) secondary plant compound epigallocatechin gallate: a new gateway in metastasis prevention? vol.12, pp.1, 2012, https://doi.org/10.1186/1472-6882-12-258