DOI QR코드

DOI QR Code

Differential Influences in Sizes and Cell Cycle Stages of Donor Blastomeres on the Development of Cloned Rabbit Embryos

  • Ju, Jyh-Cherng (Department of Animal Science, National Chung Hsing University) ;
  • Yang, Jyh-Shyu (Department of Animal Science, National Chung Hsing University) ;
  • Liu, Chien-Tsung (Department of Medical Research, Mackay Memorial Hospital) ;
  • Chen, Chien-Hong (Department of Animal Science, National Chung Hsing University) ;
  • Tseng, Jung-Kai (Department of Animal Science, National Chung Hsing University) ;
  • Chou, Po-Chien (Department of Animal Science, National Chung Hsing University) ;
  • Cheng, San-Pao (Department of Animal Science, National Chung Hsing University)
  • Received : 2002.02.26
  • Accepted : 2002.06.10
  • Published : 2003.01.01

Abstract

Experiments were conducted to evaluate the effect of blastomere diameters and cell cycle stages on the subsequent development of nuclear transplant rabbit embryos (NT-embryos) using nuclei derived from the 16- or 32-cell stage embryos. All blastomeres and NT-embryos were cultured individually in modified Ham's F-10 medium supplemented with 10% rabbit serum (RS) at $38^{\circ}C$ and 5% $CO_2$ in air. The diameter of blastomeres from 16-cell stage embryos was found twice of those from 32-cell stage (51 vs 27 ${\mu}m$). Significant differences were observed in cleavage rates ($\geq$3 divisions) in the isolated single blastomeres (54 vs 48 for 16-cell; 28 vs 14 for 32-cell, p<0.05), but the fusion rates of oocytes with transferred nuclei were similar between small and large single blastomeres derived from either 16-cell or 32-cell stage embryos. When 16-cell stage blastomeres were used as nuclear donors, cleavage rates ($\geq$3 divisions) of the NT-embryos were greater in the small nuclear donors than in the large donors (73 vs 55%, p<0.05). On the contrary, significantly higher cleavage (43 vs 6%, p<0.05) and developmental rates (14 vs 0%, p<0.05) were observed in the large blastomere nuclear donor group of the 32-cell stage embryos. When the cell cycle stages were controlled by a microtubule polymerization inhibitor (Demicolcine, DEM) or the combined treatment of DEM and Aphidicolin (APH), a DNA polymerase inhibitor, fusion rates were 88-96% for the 16-cell donor group (without DEM treatment), which were greater than the 32-cell donor group (54-58%). Cleavage rates were also greater in the transplants derived from G1 nuclear donor group (93-95%) than those from the DEM and APH combined treatment (73%) for the 16-cell donor group (p<0.05). No significant difference was detected in the morula/blastocyst rates in either donor cell stage (p>0.05). In conclusion, it appeared that no difference in the developmental competence between large and small isolated blastomeres was observed. When smaller 16-cell stage blastomeres were used as nuclear donor, the cleavage rate or development of NT-embryos was improved and was compromised when 32-cell stage blastomeres were used. Therefore, control nuclear stage of the donor cell at $G_1$ phase in preactivated nuclear recipients seemed to be beneficial for the cleavage rate of the reconstructed embryo in the 16-cell transplant, but not for subsequent morula or blastocyst development.

Keywords

References

  1. Baguisi, A., E. Behboodi, D.T. Melican, J. S. Pollock, M. M, Destrempes, C. Cammuso, J. L. Willliams, S. D. Nims, C. A. Porter, P. Midura, M. J. Palacios, S. L. Ayres, R. S. Denniston, M. L. Hayes, C. A. Ziomek, H. M. Meade, R. A. Godke, W. G. Gavin, E. W. Overstrom and Y. Echelard. 1999. Production of goats by somatic cell nuclear transfer. Nat. Biotech. 17:456-461. https://doi.org/10.1038/8632
  2. Betthauser, J., E. Forsberg, M. Augenstein, L. Childs, K. Eilertsen, J. Enos, T. Forsythe, P. Golueke, G. Jurgella, R. Koppang, T. Lesmeister, K. Mallon, G. Mell, P. Misica, M. Pace, M. Pfister-Genskow, N. Strelchenko, G. Voelker, S. Watt, S. Thompson and M. Bishop. 2000. Production of cloned pigs from in vitro systems. Nat. Biotech. 18:1055-1059. https://doi.org/10.1038/80242
  3. Briggs, R. and T. J. King. 1952. Transplantation of living nuclei from blastula cells into enucleated frog eggs. Proc. Natl. Acad. Sci. USA 38:455-467. https://doi.org/10.1073/pnas.38.5.455
  4. Campbell, K. H. S. 1999. Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning 1:3-15. https://doi.org/10.1089/15204559950020058
  5. Campbell, K. H. S., P. Loi, P. Cappai and I. Wilmut. 1994. Improved development to blastocyst of ovine nuclear transfer embryos reconstructed during the presumptive S-phase of enucleated activated oocytes. Biol. Reprod. 50:1385-1393. https://doi.org/10.1095/biolreprod50.6.1385
  6. Campbell, K. H. S., J. McWhir, W. A. Ritchie and I. Wilmut. 1996. Sheep cloned by nulear transfer from a cultured cell line. Nature 380:64-66. https://doi.org/10.1038/380064a0
  7. Carney, E. W. and R. H. Foote. 1990. Effects of superovulation, embryo recovery, culture system, and embryo transfer on development of rabbit embryos in vivo and in vitro. J. Reprod. Fertil. 89:543-551. https://doi.org/10.1530/jrf.0.0890543
  8. Cheng, S. P., Y. C. Chang, J. C. Ju and C. L. Young. 1988. In vitro development of intact and micromanipulated rabbit embryos. In: Proceedings of the three-way faculty exchange seminar on the application of biotechnology to agriculture. Seoul, Korea, pp. 235-244.
  9. Cibelli, J. B., S. L. Stice, P. J. Golueke, J. J. Kane, J. Jerry, C. Blackwell, F. A. Ponce de Leon and J. M. Robl. 1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280:1256-1258. https://doi.org/10.1126/science.280.5367.1256
  10. Clayton, L., A. Hall and M. H. Johnson. 1999. A role for rho-like GTPases in the polarization of mouse eight-cell blastomeres. Dev. Biol. 205:322-331. https://doi.org/10.1006/dbio.1998.9117
  11. Collas, P. and J. M. Robl. 1990. Factors affecting the efficiency of nuclear transplantation in the rabbit embryo. Biol. Reprod. 43: 877-884. https://doi.org/10.1095/biolreprod43.5.877
  12. Collas, P. and J. M. Robl. 1991a. Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol. Reprod. 45:455-465. https://doi.org/10.1095/biolreprod45.3.455
  13. Collas, P. and J. M. Robl. 1991b. Development of rabbit nuclear transplant embryos from morula and blastocyst stage donor nuclei. Theriogenology 35:190 (Abstr.). https://doi.org/10.1016/0093-691X(91)90166-B
  14. Collas, P., J. J. Balise. and J. M. Robl. 1992a. Influence of cell cycle stage of the donor nucleus on development of nuclear transplant rabbit embryos. Biol. Reprod. 46:492-500. https://doi.org/10.1095/biolreprod46.3.492
  15. Collas, P., C. Pinto-Correia, F. A. P. D. Leon and J. M. Robl. 1992b. Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biol. Reprod. 46:501-511. https://doi.org/10.1095/biolreprod46.3.501
  16. Fissore, R. A., J. R. Dobrinsky, J. J. Balise, R. T. Duby. and J. M. Robl. 1992. Patterns of intracellular $Ca^{2+}$ concentration in fertilized bovine eggs. Biol. Reprod. 47:960-969. https://doi.org/10.1095/biolreprod47.6.960
  17. Fleming, T. P., S. J. Pickering, F. Qasim and B. Maro. 1986. The generation of cell surface polarity in mouse 8-cell balstomeres: the role of cortical microfilaments analysed using cytochalasin D. Embryol. Exp. Morphol. 95:169-191.
  18. Foote, R. H. and M. E. Simkin. 1993. Use of gonadotropic releasing hormone for ovulating the rabbit model. Lab. Anim. Sci. 43:383-385.
  19. Hill, J. R., A. J. Roussel, J. B. Cibelli, J. F. Edwards, N. L. Hooper, M. W. Miller, J. A. Thompson, C. R. Looney, M. E. Westhusin, J. M. Robl and S. L. Stice. 1999. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51:1451-1465. https://doi.org/10.1016/S0093-691X(99)00089-8
  20. Hinegadner, R. T., B. Rao and D. E. Feldman. 1964. The DNA synthetic period during early development of the sea urchin egg. Expl. Cell Res. 36:53-61. https://doi.org/10.1016/0014-4827(64)90159-4
  21. Ito, S., K. Dan and D. Goodenough. 1981. Ultrastructure and 3Hthymidine incorporation into chromosome vesicles in sea urchin embryos. Chromosoma 83:441-453. https://doi.org/10.1007/BF00328271
  22. Ju, J. C., S. P. Cheng, P. C. Tarng and K. B. Choo. 1991. In vivo development and microinjection of rabbit zygotes. Asian-Aus. J. Anim. Sci. 4:73-78. https://doi.org/10.5713/ajas.1991.73
  23. Ju, J. C., Y. C. Chang, W. T. Huang, P. C. Tang and S. P. Cheng. 2000. Superovulation and transplantaiton of demi- and aggregated embryos in rabbits. Asian-Aust. J. Anim. Sci. 14: 455-461.
  24. Ju, J. C., J. S. Yang, C. T. Liu, C. H. Chen, P. C. Chou, J. K. Tseng and S. P. Cheng. 2000. Effects of size and cell cycle stages of nuclear donor cells on the developmental competence of cloned rabbit embryos. Biol. Reprod. 62:248(Abstr.). https://doi.org/10.1095/biolreprod62.2.248
  25. Koyama, H., H. Suzuki, X. Yang, S. Jiang and R. H. Foote. 1994. Analysis of Polarity of Bovine and Rabbit Embryos by Scanning Electron Microscopy. Biol. Reprod. 50:163-170. https://doi.org/10.1095/biolreprod50.1.163
  26. Kubota, C., H. Yamakuchi, J. Todoroki, K. Mizoshita, N. Tabara, M. Barber and X. Yang. 2000. Six cloned calves produced from adult fibroblast cells after long-term culture. Proceedings of National Academic Science (USA) 97:990-995. https://doi.org/10.1073/pnas.97.3.990
  27. Laskey, R. A., A. D. Mills and N. R. Morris. 1977. Assembly of SV40 chromatin in a cell-free system from Xenopus eggs. Cell 10:237-243. https://doi.org/10.1016/0092-8674(77)90217-3
  28. Levy, J. B., M. H. Johnson, H. Goodall and B. Maro. 1986. The timing of compaction: Control of a major developmental transition in mouse early embryogenesis. J. Embryol. Exp. Morphol. 95:213-237.
  29. McGrath, J. and D. Solter. 1983. Nuclear transplantation in mouse embryo by microsurgery and cell fusion. Science 220:1300-1302. https://doi.org/10.1126/science.6857250
  30. McGrath, J. and D. Solter. 1984a. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317-1319. https://doi.org/10.1126/science.6542249
  31. McGrath, J. and D. Solter. 1984b. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179-183. https://doi.org/10.1016/0092-8674(84)90313-1
  32. Meng, L., J. J. Ely, R. L. Stouffer and D. P. Wolf. 1997. Rhesus monkeys produced by nuclear transfer. Biol. Reprod. 57:454-459. https://doi.org/10.1095/biolreprod57.2.454
  33. Newport, J. W. and M. W. Kirschner. 1986. A major developmental transition in early Xenopus. I. Characterization and timing of cellular changes at midblastula stage. Cell 30:675-686. https://doi.org/10.1016/0092-8674(82)90272-0
  34. Onishi, A., M. Iwamoto, T. Akita, S. Mikawa, K. Takeda, T. Awata, H. Hanada and A. C. F. Perry. 2000. Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188-1190. https://doi.org/10.1126/science.289.5482.1188
  35. Ozil, J. P. and J. A. Modlinski. 1986. Effects of electric field on fusion rate and survival of 2-cell rabbit embryos. J. Embryol. Exp. Morph. 96:211-228.
  36. Prather, R. S., A. C. Boquest and B. N. Day. 1999. Cell cycle analysis of cultured porcine mammary cells. Cloning 1:17-24. https://doi.org/10.1089/15204559950020067
  37. Prather, R. S., T. Tao and Z. Machaty. 1999. Development of the techniques for nuclear transfer in pigs. Theriogenology 51:487-498. https://doi.org/10.1016/S0093-691X(98)00242-8
  38. Polejaeva, I. A., S. H. Chen, T. D. Vaught, R. L. Page, J. Mullins, S. Ball, Y. Dai, J. Boone, S. Walker, D. L. Ayares, A. Colman and K. H. S. Campbell. 2000. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86-90. https://doi.org/10.1038/35024082
  39. Robl, J. M. 1999. Development and application of technology for large scale cloning of cattle. Theriogenology 51:499-508. https://doi.org/10.1016/S0093-691X(98)00243-X
  40. Seidel, G. E., Jr., A. Brown and M. T. Kane. 1976. In vitro fertilization, culture, and transfer of rabbit ova. Fertil. Steril. 27:861-870. https://doi.org/10.1016/S0015-0282(16)41964-3
  41. Sefton, M., M. H. Johnson and L. Clayton. 1992. Synthesis and phosphorylation of uvomorulin during mouse early development. Development 115:313-318.
  42. Smith, L. C. and I. Wilmut. 1989. Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biol. Reprod. 40:1027-1035. https://doi.org/10.1095/biolreprod40.5.1027
  43. Spemann, H. 1938. Embryonic development and induction. Hafner, New York.
  44. Stice, S. L., J. Gibbons, S. J. Rzucidlo and C. A. Baile. 2000. Improvements in nuclear transfer procedures will increase commercial utilization of animal cloning. Asian-Aus. J. Anim. Sci. 13:856-860. https://doi.org/10.5713/ajas.2000.856
  45. Stice, S. L. and C. L. Keefer. 1993. Multiple generational bovine embryo cloning. Biol. Reprod. 48:715-719. https://doi.org/10.1095/biolreprod48.4.715
  46. Stice, S. L. and J. M. Robl 1988. Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39:657-664. https://doi.org/10.1095/biolreprod39.3.657
  47. Tao, T., A. C. Boquest, Z. Machaty, A. L. Petersen, B. N. Day and R. S. Prather. 1999. Development of pig embryos by nuclear transfer of cultured fibroblast cells. Cloning 1:55-62. https://doi.org/10.1089/15204559950020094
  48. Wakayama, T., A. C. F. Perry, M. Zuccotti, K. R. Jonhnson and R. Yanagimachi. 1998. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369-374.
  49. Wells, D. N., P. M. Misica, H. R. Tervit and W. H. Vivanco. 1998. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod. Fertil. Dev. 10:369-378. https://doi.org/10.1071/R98109
  50. Wells, D. N., P. M. Misica and H. R. Tervit. 1999. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60:996-1005. https://doi.org/10.1095/biolreprod60.4.996
  51. Wilmut, A. E. S., J. McWhir, A. J. Kind and K. H. S. Campbell. 1997. Viable offspring derived from fetal and adult mammalian cell. Nature 385:810-813. https://doi.org/10.1038/385810a0
  52. Wolf, D. P., L. Meng, N. Ouhibi and M. Zelinski-Wooten. 1999. Nuclear transfer in the Rhesus monkey: practical and basic implications. Biol. Reprod. 60:199-204. https://doi.org/10.1095/biolreprod60.2.199
  53. Yang, X., Y. Chen and R. H. Foote. 1990a. Potential of hypertonic medium treatment for embryo micromanipulation: I. Survival of rabbit embryos in vitro and in vivo following sucrose treatment. Mol. Reprod. Dev. 27:110-117. https://doi.org/10.1002/mrd.1080270205
  54. Yang, X., L. Zhang, A. Kovacs, C. Tobback and R. H. Foote. 1990b. Potential of hypertonic medium treatment for embryo micromanipulation: II. Assessment of nuclear transplantation methodology, isolation, subzona insertion, and electrofusion of blastomeres to intact or functionally enucleated oocyte in rabbits. Mol. Reprod. Dev. 27:118-129. https://doi.org/10.1002/mrd.1080270206
  55. Zakahrtchenko, V., R. Alberio, M. Stojkovic, K. Prelle, W. Schernthaner, P. Stojkovic, H. Wenigerkind, R. Wanke, M. Duchler, R. Steinborn, M. Mueller, G. Brem and E. Wolf. 1999. Adult cloning in cattle: potential of nuclei from a permanent cell line and from primary cultures. Mol. Reprod. Dev. 54:264-272. https://doi.org/10.1002/(SICI)1098-2795(199911)54:3<264::AID-MRD7>3.0.CO;2-Y
  56. Zimmermann, U. and J. Vienken. 1982. Electric field-induced cell-to-cell fusion. J. Mem. Biol. 67:165-82.

Cited by

  1. Cell Cycle Stage Analysis of Rabbit Foetal Fibroblasts and Cumulus Cells vol.39, pp.6, 2004, https://doi.org/10.1111/j.1439-0531.2004.00525.x
  2. The Influence of Microinjection of Foreign Gene into the Pronucleus of Fertilized Egg on the Preimplantation Development, Cell Number and Diameter of Rabbit Embryos vol.19, pp.2, 2003, https://doi.org/10.5713/ajas.2006.171