References
- Abril, N., Luque-Romero, F. L., Prieto-Alamo, M.-J., Rafferty, J. A., Margison, G. P. and Pueyo, C. (1997) Bacterial and mammalian DNA alkyltransferases sensitize Escherichia coli to the lethal and mutagenic effects of dibromoalkanes. Carcinogenesis 18. 1883-1888. https://doi.org/10.1093/carcin/18.10.1883
- Abril, N., Luqueromero. F. L., Prieto-Alamo, M. J., Margison, G. P. and Pueyo, C. (1995) ogt alkyltransferase enhances dibromoalkane mutagenicity in excIsIon repair-deficient Escherichia coli K-12. Mol. Carcinogen. 12. 110-117. https://doi.org/10.1002/mc.2940120208
-
Abril, N. and Margison, G. P. (1999) Mammalian cells expressing Escherichia coli
$O^{6}$ -alkylguanine-DNA alkyltransferases are hypersensitive to dibromoalkanes. Chem. Res. Toxicol. 12, 544-551. https://doi.org/10.1021/tx980250h - Ahmed, A. E. and Anders, M. W. (1976) Metabolism of dihalomethanes to formaldehyde and inorganic halide. I. In vitro studies. Drug Metab. Dispos. 4, 357-361.
- Ahmed, A. E.. Kubic, V. L. and Anders, M. W. (1977) Metabolism of haloforms to carbon monoxide. I. In vitro studies. Drug Metab. Dispos. 5, 198-204.
- Andersen, M. E., Clewell, H. J., III. Gargas, M. L., Smith, F. A. and Reitz, R. H. (1987) Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol. Appl. Pharmacol. 87, 185-205. https://doi.org/10.1016/0041-008X(87)90281-X
- Anderson, M. W. and Maronpot, R. R. (1993) Methylene chloride-induced tumorigenesis. Carcinogenesis 14, 787-788. https://doi.org/10.1093/carcin/14.5.787
- Armstrong, R. N. (1997) Glutathione transferases. In Biotransformation, Vol. 3, Comprehensive Toxicology (Guengerich, F. P., ed.) 307-327, Elsevier Science Ltd., Oxford.
- Ballering, L. A. P., Nivard, M. J. M. and Vogel, E. W. (1994) Mutation spectra of 1,2-dibromoethane, 1,2-dichloroethane and 1-bromo-2-chloroethane in excision repair proficient and repair deficient strains of Drosophila melanogaster. Carcinogenesis 15, 869-875. https://doi.org/10.1093/carcin/15.5.869
-
Cmarik, J. L.. Humphreys, W. G., Bruner, K. L., Lloyd, R. S., Tibbetts, C. and Guengerich, F. P. (1992) Mutation spectrum and sequence alkylation selectivity resulting from modification of bacteriophage M13mp18 with S-(2-chloroethyl)glutathione. Evidence for a role of S-[2-(
$N^{7}$ -guanyl)ethyl]glutathione as a mutagenic lesion formed from ethylene dibromide. J. Biol. Chem. 267, 6672-6679. -
DeMarini, D. M., Shelton, M. L.. Warren, S. H., Ross, T. M., Shim, J. Y., Richard, A. M. and Pegram, R. A. (1997) Glutathione S-transferase-mediated induction of GC
$\rightarrow$ AT transitions by halomethanes in Salmonella. Environ. Mol. Mutagen. 30,440-447. https://doi.org/10.1002/(SICI)1098-2280(1997)30:4<440::AID-EM9>3.0.CO;2-M - Fossett, N. G., Byrne. B. J., Thcker, A. B., Arbour-Reily, P., Chang, S. and Lee, W. R. (1995) Mutation spectrum of 2- chloroethyl methanesulfonate in Drosophila melanogaster premeiotic germ cells. Mutat. Res. 331, 213-224. https://doi.org/10.1016/0027-5107(95)00079-X
- Foster, P. L., Wilkinson, W. G., Miller, J. K., Sullivan, A. D. and Barnes, W. M. (1988) An analysis of the mutagenicity of 1,2- dibromoethane to Escherichia coli: influence of DNA repair activities and metabolic pathways. Mutat. Res. 194, 171-181.
- Graminski, G. F., Kubo, Y. and Armstrong, R. N. (1989) Spectroscopic and kinetic evidence for the thiolate anion of glutathione at the active site of glutathione S-transferase. Biochemistry 28, 3562-3568. https://doi.org/10.1021/bi00434a062
- Graves, R. J., Coutts, C. and Green, T. (1995) Methylene chloride-induced DNA damage: an interspecies comparison. Carcinogenesis 16, 1919-1926. https://doi.org/10.1093/carcin/16.8.1919
- Green, T. (1983) The metabolic activation of dichloromethane and chlorofluoromethane in a bacterial mutation assay using Salmonella typhimurium. Mutat. Res. 118, 277-288. https://doi.org/10.1016/0165-1218(83)90211-2
- Guengerich, F. P., Crawford, W. M., Jr., Domoradzki, J. Y., Macdonald, T. L. and Watanabe, P. G. (1980) In vitro activation of 1,2-dichloroethane by microsomal and cytosolic enzymes. Toxicol. Appl. Pharmacol. 55, 303-317. https://doi.org/10.1016/0041-008X(80)90092-7
-
Hashrni, M., Dechert, S., Dekant, W. and Anders, M. W. (1994) Bioactivation of
$\left[13_{C} \right]$ dichloromethane in mouse, rat, and human liver cytosol:$13_{C}$ nuclear magnetic resonance spectroscopic studies. Chem. Res. Toxicol. 7, 291-296. https://doi.org/10.1021/tx00039a004 - Huff, J., Bucher, J. and Barrett, J. C. (1996) Methylene chloride. Science 272, 1083-1084. https://doi.org/10.1126/science.272.5265.1083
-
Humphreys, W. G., Kim, D. H. and Guengerich, F. P. (1991) Isolation and characterization of
$N^{7}$ -guanyl adducts derived from 1,2-dibromo-3-chloropropane. Chern. Res. Toxicol. 4, 445-453. https://doi.org/10.1021/tx00022a008 - Humphreys, W. G., Kim, D.-H., Cmarik, J. L., Shimada, T. and Guengerich, F. P. (1990) Comparison of the DNA alkylating properties and mutagenic responses caused by a series of S-(2- haloethyl)-substituted cysteine and glutathione derivatives. Biochemistry 29, 10342-10350. https://doi.org/10.1021/bi00497a008
- Inskeep, P. B. and Guengerich, F. P. (1984) Glutathione-mediated binding of dibromoalkanes to DNA: specificity of rat glutathione S-transferases and dibromoalkane structure. Carcinogenesis 5, 805-808. https://doi.org/10.1093/carcin/5.6.805
-
Inskeep, P. B., Koga, N., Cmarik, J. L. and Guengerich, F. P. (1986) Covalent binding of 1,2-dihaloalkanes to DNA and stability of the major DNA adduct, S-[2-(
$N^{7}$ - guanyl)ethyljglutathione. Cancer Res. 46, 2839-2844. -
Karran, P., Lindahl, T. and Griffin, B. (1979) Adaptive response to alkylating agents involves alteration in situ of
$O^{6}$ -methylguanine residues in DNA. Nature 280, 76-77. https://doi.org/10.1038/280076a0 - Kayser, M. F. and Vuilleumier, S. (2001) Dehalogenation of dichloromethane by dichloromethane dehalogenase/glutathione S-transferase leads to formation of DNA adducts. J. Bacteriol. 183, 5209-5212. https://doi.org/10.1128/JB.183.17.5209-5212.2001
-
Kim, D. H. and Guengerich, F. P. (1989) Excretion of the mercapturic acid S-[2-(
$N^{7}$ -guanyl)ethyl]-N-acetylcysteine in urine following administration of ethylene dibromide to rats. Cancer Res. 49, 5843-5851. -
Kim, D.-H., Humphreys, W. G. and Guengerich, F. P. (1990) Characterization of S-[2-(
$N^{1}$ -adenyl)ethyl]glutathione formed in DNA and RNA from 1,2-dibromoethane. Chem. Res. Toxicol. 3, 587-594. https://doi.org/10.1021/tx00018a015 -
Kim, M.-S. and Guengerich, F. P. (1997) Synthesis of oligonucleotides containing the ethylene dibromide-derived DNA adducts S-[2-(
$N^{7}$ -guanyl)ethyl]glutathione, S-[2-($N^{2}$ -guanyl) ethyljglutathione, and S-[2-($O^{6}$ -guanyl)ethyljglutathione at a single site. Chem. Res. Toxicol. 10, 1133-1143. https://doi.org/10.1021/tx9701081 -
Kim, M.-S. and Guengerich, F. P. (1998) Polymerase blockage and misincorporation of dNTPs opposite the ethylene dibromide- derived DNA adducts S-[2-(
$N^{7}$ -guanyl)ethyljglutathione, S-[2- ($N^{2}$ -guanyl)ethyl]glutathione, and S-[2-($O^{6}$ -guanyl)ethyl] glutathione. Chem. Res. Toxicol. 11, 311-316. https://doi.org/10.1021/tx970206m -
Koga, N., Inskeep, P. B., Harris, T. M. and Guengerich, F. P. (1986) S-[2-(
$N^{7}$ -Guanyl)ethyljglutathione, the major DNA adduct formed from 1,2-dibromoethane. Biochemistry 25, 2192-2198. https://doi.org/10.1021/bi00356a051 - Letz, G. A, Pond, S. M., Osterloh, J. D., Wade, R. L. and Becker, C. E. (1984) Two fatalities after acute occupational exposure to ethylene dibromide. J. Am. Med. Assoc. 252, 2428-2431. https://doi.org/10.1001/jama.252.17.2428
-
Liu, L., Pegg, A. E., Williams, K. M. and Guengerich, F. P. (2002) Paradoxical enhancement of the toxicity of 1,2- dibromoethane by
$O^{6}$ -alkylguanine-DNA alkyltransferase. J. BioI. Chem 277, 37920-37928. https://doi.org/10.1074/jbc.M205548200 - Marsch, G. A, Mundkowski, R G., Morris, B. J., Manier, M. L., Hartman, M. K. and Guengerich, F. P. (2001) Characterization of nucleoside and DNA adducts formed by S-(1-acetoxymethyl) glutathione and implications for dihalomethane-glutathione conjugates. Chem. Res. Toxicol. 14, 600-608. https://doi.org/10.1021/tx010006h
- Moshinsky, D. J. and Wogan, G. N. (1997) UV-induced mutagenesis of human p53 in a vector replicated in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 2266-2271. https://doi.org/10.1073/pnas.94.6.2266
- Oda, Y., Yamazaki, H., T.hier, R, Ketterer, B., Guengerich, F. P. and Shimada, T. (1996) A new Salmonella typhimurium NM5004 strain expressing rat glutathione S-transferae 5-5: use in detection of genotoxicity of dihaloalkanes using an SOS/ umu test system. Carcinogenesis 17, 297-302.
-
Ozawa, N. and Guengerich, F. P. (1983) Evidence for formation of an S-[2-(
$N^{7}$ -guanyl)ethyl]glutathione adduct in glutathione-mediated binding of 1,2-dibromoethane to DNA Proc. Natl. Acad. Sci. USA 80, 5266-5270. https://doi.org/10.1073/pnas.80.17.5266 - Pegram, R. A, Andersen, M. E., Warren, S. H., Ross, T. M. and Claxton, L. D. (1997) Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane and chloroform. Toxicol. Appl. Phannacol. 144, 183-188. https://doi.org/10.1006/taap.1997.8123
-
Peterson, L. A, Harris, T. M. and Guengerich, F. P. (1988) Evidence for an episulfonium ion intermediate in the formation of S-[2-(
$N^{7}$ -guanyl)ethyl]glutathione in DNA. J. Am. Chem. Soc. 110, 3284-3291. https://doi.org/10.1021/ja00218a045 - Rannug, U. and Beije, B. (1979) The mutagenic effect of 1,2- dichloroethane on Salmonella typhimurium. II. Activation by the isolated perfused rat liver. Chem.-Biol. Interact. 24, 265-285. https://doi.org/10.1016/0009-2797(79)90077-2
- Rannug, U., Sundvall, A and Ramel, C. (1978) The mutagenic effect of 1,2-dichloroethane on Salmonella typhimurium. I. Activation through conjugation with glutathione in vitro. Chem.-Biol. Interact. 20, 1-16. https://doi.org/10.1016/0009-2797(78)90076-5
- Reitz, R H., Mendrala, A. and Guengerich, F. P. (1989) In vitro metabolism of methylene chloride in human and animal tissues: use in physiologically-based pharmacokinetic models. Toxicol. Appl. Phannacol. 97, 230-246. https://doi.org/10.1016/0041-008X(89)90328-1
- Rhomberg, L. (1995) Use of quantitative modelling in methylene chloride risk assessment. Toxicology 102, 95-114. https://doi.org/10.1016/0300-483X(95)03039-I
- Sagher, D. and Strauss, B. (1983) Insertion of nucleotides opposite apurinic/apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochemistry 22, 4518-4526. https://doi.org/10.1021/bi00288a026
- Sun, M. (1984) EDB contamination kindles federal action. Science 223, 464-466. https://doi.org/10.1126/science.6362008
- Thier, R., Mulier, M., Taylor, J. B., Pemble, S. E., Ketterer, B. and Guengerich, F. P. (1995) Enhancement of bacterial mutagenicity of bifunctional alkylating agents by expression of mammalian glutathione S-transferase. Chem. Res. Toxicol. 8, 465-472. https://doi.org/10.1021/tx00045a019
- Thier, R., Pemble, S. E., Taylor, J. B., Humphreys, W. G., Persmark, M., Ketterer, B. and Guengerich, F. P. (1993) Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc. Natl. Acad. Sci. USA 90, 8576-8580. https://doi.org/10.1073/pnas.90.18.8576
- Thier, R., Pemble, S., Kramer, H., Taylor, J. B., Guengerich, F. P., and Ketterer, B. (1996) Human glutathione S-transferase T1-1 enhances mutagenicity of 1,2-dibromoethane, dibromomethane, and 1,2,3,4-diepoxybutane in Salmonella typhimurium. Carcinogenesis 17, 163-166. https://doi.org/10.1093/carcin/17.1.163
- van Bladeren, P. J., Breimer, D. D., Rotteveel-Smijs, G. M. T. and Moho, G. R. (1980) Mutagenic activation of dibromomethane and diiodomethane by mammalian microsomes and glutathione S-transferases. Mutat. Res. 74, 341-346. https://doi.org/10.1016/0165-1161(80)90192-2
- van Bladeren. P. J., van der Gen, A., Breimer, D. D. and Mohn, G. R. (1979) Stereoselective activation of vicinal dihalogen compounds to mutagens by glutathione conjugation. Biochem. Pharmacol. 28, 2521-2524. https://doi.org/10.1016/0006-2952(79)90019-4
- Wheeler, J. B., Stourman, N. V., Armstrong, R. N. and Guengerich, F. P. (2001 a) Conjugation of haloalkanes by bacterial and mammalian glutathione transferases: mono- and vicinal dehaloethanes. Chem. Res. Toxicol. 14, 1107-1117. https://doi.org/10.1021/tx0100183
- Wheeler, J. B., Stourman, N. V., Thier, R., Dommermuth, A., Vuilleumier, S., Rose, J. A., Armstrong, R. N. and Guengerich, F. P. (2001b) Conjugation of haloalkanes by bacterial and mammalian glutathione transferases: mono- and dihalomethanes. Chem. Res. Toxicol. 14, 1118-1127. https://doi.org/10.1021/tx010019v
Cited by
- Three common pathways of nephrotoxicity induced by halogenated alkenes vol.31, pp.1, 2015, https://doi.org/10.1007/s10565-015-9293-x
- Shift of oxidants and antioxidants levels in rats as a reaction to exposure to sulfur mustard vol.29, pp.8, 2009, https://doi.org/10.1002/jat.1451
- Oxidative stress after sulfur mustard intoxication and its reduction by melatonin: efficacy of antioxidant therapy during serious intoxication vol.34, pp.1, 2011, https://doi.org/10.3109/01480545.2010.505238
- Glutathione‐dependent Bioactivation of Haloalkanes and Haloalkenes vol.36, pp.3-4, 2004, https://doi.org/10.1081/DMR-200033451
- Screening for reactive metabolites using electro-optical arrays featuring human liver cytosol and microsomal enzyme sources and DNA pp.36, 2009, https://doi.org/10.1039/b909372a
- Genotoxic Impurities in Pharmaceutical Manufacturing: Sources, Regulations, and Mitigation vol.115, pp.16, 2015, https://doi.org/10.1021/cr300095f
- Nature and nurture – lessons from chemical carcinogenesis vol.5, pp.2, 2005, https://doi.org/10.1038/nrc1546
- Determination of Hepatotoxicity and Its Underlying Metabolic Basis of 1,2-Dichloropropane in Male Syrian Hamsters and B6C3F1 Mice vol.145, pp.1, 2015, https://doi.org/10.1093/toxsci/kfv045
- Dose-response relationship, kinetics of formation, and persistence of S-[2-(N7-guanyl)-ethyl]glutathione-DNA adduct in livers of channel catfish (Ictalurus punctatus) exposed in vivo to ethylene dichloride vol.29, pp.7, 2010, https://doi.org/10.1002/etc.193
- Different sensitivity of BALB/c 3T3 cell clones in the response to carcinogens vol.25, pp.6, 2011, https://doi.org/10.1016/j.tiv.2011.05.032
- Contributions of Human Enzymes in Carcinogen Metabolism vol.25, pp.7, 2012, https://doi.org/10.1021/tx300132k
- Principles of covalent binding of reactive metabolites and examples of activation of bis-electrophiles by conjugation vol.433, pp.2, 2005, https://doi.org/10.1016/j.abb.2004.07.035
- Screening and characterization of variant Theta-class glutathione transferases catalyzing the activation of ethylene dibromide to a mutagen vol.47, pp.9, 2006, https://doi.org/10.1002/em.20252
- BALB/c 3T3 cell transformation assay for the prediction of carcinogenic potential of chemicals and environmental mixtures vol.24, pp.4, 2010, https://doi.org/10.1016/j.tiv.2010.03.003
- Assessment of the Genotoxicity of 1,2-Dichloropropane and Dichloromethane after Individual and Co-exposure by Inhalation in Mice vol.56, pp.3, 2014, https://doi.org/10.1539/joh.13-0236-OA
- Modifying effects of 1,2-dichloropropane on N-nitrosobis(2-oxopropyl)amine-induced cholangiocarcinogenesis in male Syrian hamsters vol.40, pp.5, 2015, https://doi.org/10.2131/jts.40.647
- 7-Glutathione Pyrrole Adduct: A Potential DNA Reactive Metabolite of Pyrrolizidine Alkaloids vol.28, pp.4, 2015, https://doi.org/10.1021/tx500417q
- Thiols and the chemoprevention of cancer vol.7, pp.4, 2007, https://doi.org/10.1016/j.coph.2007.05.005
- Structural Basis of the Suppressed Catalytic Activity of Wild-type Human Glutathione Transferase T1-1 Compared to its W234R Mutant vol.355, pp.1, 2006, https://doi.org/10.1016/j.jmb.2005.10.049