
Journal of the Korean Institute of Industrial Engineers
Vol. 29, No. 3, pp. 222-229, September 2003.

2 지역/지정위치 저장시스템의 분석과 최적화

양 문희
†

단국대학교 공학부(산업공학 전공)

Analysis and Optimization of a 2-Class-based
Dedicated Storage System

Moonhee Yang

Department of Industrial Engineering, Dankook University, Cheonan, 330-714

In this paper, we address a layout design problem, PTN[2], for determining an appropriate 2-class-based
dedicated storage layout in a class of unit load storage systems. Our strong conjecture is that PTN[2] is NP-hard.
Restricting PTN[2], we provide three solvable cases of PTN[2] in which an optimal solution to the solvable
cases is one of the partitions based on the PAI(product activity index)-nonincreasing ordering. However, we
show with a counterexample that a solution based on the PAI-nonincreasing ordering does not always give an
optimal solution to PTN[2]. Utilizing the derived properties, we construct an effective heuristic algorithm for
solving PTN[2] based on a PAI-nonincreasing ordering with performance ratio bound. Our algorithm with O(n2)
is effective in the sense that it guarantees a better class-based storage layout than a randomized storage layout in
terms of the expected single command travel time.

Keywords: class-based dedicated storage layout, unit load system, AS/RS

The Research was conducted by the research fund of Dankook University in 2003.
†Corresponding author : Professor Moonhee Yang, Department of Industrial Engineering, Dankook University, San 29 Anseo-Dong Cheonan,

Choongnam, 330-714 Korea, Fax : +82-041-550-3570, e-mail : myfriend@dankook.ac.kr
Received March 2003; revision received July 2003; accepted July 2003.

1. Introduction

A unit load can be defined as a unit to be moved or
handled at one time. A storage system can be called a
unit load storage system where unit loads are stored,
handled, and retrieved. Automated storage/retrieval
systems (AS/RS) or rack-supported storage systems
can be the type of unit load systems (Yang, 1988).
K-class-based dedicated storage policy or simply
K-class-based storage policy employs K zones in
which lots from a class of products, are stored
randomly. Tompkins and White(1984) pointed out that
class-based storage with randomized storage within
each class can yield both the throughput benefits of
dedicated storage and the space benefits of rando-
mized storage. Also they suggested that in order to
achieve both benefits, three to five classes may be

defined.
There have appeared many papers such as Cho

(2001), Lee(1998), Bozer(1998), Chang(1995), and
Hausman(1976) so on, which focused on both benefits
or either the throughput benefits or the space benefits
based on simulation techniques under some operating
policies.

In this paper, based on combinatorics, we define a
deterministic 2-class-based dedicated storage problem
in a unit load system and provide an effective heuristic
algorithm in addition to basic theoretical results of
2-class-based dedicated storage policy. We make “the
constant-space assumption” that the number of storage
locations for a class is not the maximum aggregate
inventory position for a class but the sum of space
requirement for products assigned to the class. In fact,
the constant-space assumption is made since the
problem for minimizing the maximum aggregate

Analysis and Optimization of a 2-Class-based Dedicated Storage System 223

Table 1. Notation List

Notation Meaning
Ak set of storage locations assigned to zone k
Ck a set of products assigned to class k

CAIk = Dk
Rk

, class activity index of class k

 D = ∑
K

k=1
Dk = ∑

n

i=1
d i

d i average retrieval rate of product i, for i=1, ..., n

Dk
 = ∑

i∈Ck
di, average retrieval rate from class k

E(SCK) expected SC travel time given K classes
E(SCK∣LAY) expected SC travel time given LAY
E(SCK∣P) expected SC travel time given P

 K number of classes or zones used in a unit load system
 LAY = {A1,A2,…,AK}, a layout given K zones
 n number of products
 P = {C1,C2,…,CK}, a partition given K classes

PAIi = di
r i

, product activity index of product i, for i=1, ..., n

r i space requirement of product i when it is replenished

 R = ∑
K

k=1
Rk = ∑

n

i=1
r i

Rk = |Ak|, number of storage locations required for zone k

t j one-way travel time to storage location j
Tk expected SC travel time from an i/o point to zone k

inventory position is well known to be NP-hard. In
addition, our strong conjecture is that our 2-class-
based dedicated storage problem seems to be NP-hard
even if it is made.

In section 2, we introduce a 2-class-based dedicated
storage problem denoted by PTN[2]. In section 3,
since our strong conjecture is that PTN[2] is NP-hard,
we provide three solvable cases by relaxing PTN[2].
We prove that an optimal solution to the solvable
cases is based on a PAI-nonincreasing ordering.
Especially, we prove that an optimal solution to a
solvable case denoted by PTL[2] is based on a PAI-
nonincreasing ordering and provide a greedy algorithm
with O(n). In section 4, we give a counter- example in
order to show that a solution based on a PAI-
nonincreasing ordering does not always give an
optimal solution to PTN[2]. In section 5, an effective
heuristic algorithm with O(n2), denoted by ALGPTN
[2], for solving PTN[2] is constructed based on a
PAI-nonincreasing ordering since the PAI indexes still
an effective approach to solving PTN[2] in the sense
that it guarantees a better class-based storage layout
than a randomized storage layout in terms of the

expected SC travel time. In addition, some properties
for PTN[2] are analyzed as well as a performance ratio
bound.

For convenience to reader, the list of symbols used
in this paper is given in <Table 1>. To denote
optimality for a decision variable, a superscript (*)
will be used at the upper right side of each symbol.

2. 2-Class-Based Storage Problem

Our storage system consists of R storage locations
each of which accommodates only one unit load. The
storage/retrieval operation is based on the 2-zone-
based storage policy and within each zone, a storage
location is equally likely to be selected for a storage
operation, i. e., random assignment rule (RAN rule) is
used.

The expected one-way travel time from a Pick-up/
Deposit (P/D) station to storage location j is given as
t j for j=1, 2, ..., R. Without loss of generality, it is

224 Moonhee Yang

assumed that t 1≤t2≤…≤tR. Let Ak be a set of
storage locations assigned to zone k for k=1, 2. We
assign the first |A1| storage locations to A1 based on
the t j-nondecreasing ordering and the remaining
storage locations to A2 where |X| denotes the car-
dinality of set X. It follows that A1= {1,2,…, |A1| }
and A2= { |A1|+1, |A1|+2, …,R}.

An arriving replenishment lot of a product i, the size
of which is r i in unit load, contains a single product
and are assigned randomly to open storage locations in
one of two separate zones by using an storage/retrieval
(S/R) machine or operator which or who can carry
only one unit load at a time. Let Ck be the set (or
class) of products assigned to zone k. Then space
requirement or the number of storage locations
required for class k, Rk, can be expressed as

Rk = |Ak| = ∑
j∈Ck
rj (1)

The average demand rate for a product i, di unit
loads/unit time, which is defined as the average
number of retrievals per unit time, is given as a real
constant in advance. Retrievals are performed on
first-in first-out basis. The average demand rate from
zone k, Dk is obtained as ∑

i∈Ck
di. Since practically a

class contains at least one product, it can be assumed
that |Ck| ≥ 1.

Our objective is to minimize E(SC2), the expected
single command travel time as follows. The expected
SC travel time to zone k, Tk, can be expressed as

Tk= 2
|Ak|

∑
j∈Ak
t j (2)

Since the probability of visiting zone k is Dk
D

,

E(SC2) can be expressed as equation (4) by replacing
Tk in equation (3) with equation (2).

E(SC 2)= ∑
2

k=1

Dk
D
Tk (3)

E(SC 2)=
2
D ∑

2

k=1

Dk
|Ak|

∑
j∈Ak
t j (4)

where D = D1+D2. Hence our problem can be
described as

PTN[2] : Given n products with { (r i,d i),i=1,2,
…, n }, {t j,j= 1,2,…,M}, find an optimal partition,
P* = {C*1,C*2} such that we minimize

Minimize { (r i,d i),i=1,2,…, n}

Z(P)=E(SC2∣P)=
2
D ∑

2

k=1

Dk
Rk

∑
j∈Ak
t j

subject to |Ck| ≥ 1 for k=1, 2
 Dk = ∑

i∈Ck
di

 Rk = |Ak| = ∑
i∈Ck
ri

3. Solvable Cases of PTN[2]

Since our strong conjecture is that PTN[2] is NP-hard,
we will provide some special solvable cases of PTN[2]
by restricting PTN[2]. Define the activity index of

product i (PAIi) as di
r i

.

3.1 Restriction of travel time : t j = pj+q

Proposition 1. If tj = pj+q for all j, then P* is one
of the partitions based on a PAI- nonincreasing
ordering.

Proof : If we replace t j with (pj+q), equation (2) can
be reduced to

 T1= p(R1+1)+2q (5)
 T2= p(2R1+R2+1)+2q (6)

Replacing T1, T2 of equation (4) with equation (5)
and equation (6), we have,

 E(SC2) = D1
D
T1+

D2
D
T2

 = p
D
{D+DR+(R1D-D1R)}+2q (7)

Let xi=1 if product i is assigned to zone 1 and xi=0
otherwise. Let c i= r iD-diR. Since R1 = ∑

n

i=1
r ix i and

D1 = ∑
n

i=1
d ix i, R1D-D1R = ∑

n

i=1
c ix i. Hence equation

(7) can be further reduced to

 E(SC2) = p
D (D+DR+ ∑

n

i=1
c ix i)+2q (8)

Since D, R, p and q are constant, and each class
must contain at least one product, the relaxed PTN[2]
can be formulated as

PTL[2] : Minimize Z = ∑
n

i=1
c ix i

 subject to ∑
n

i=1
x i ≤ (n-1)

Analysis and Optimization of a 2-Class-based Dedicated Storage System 225

 xi ∈ {0,1}

It can be observed that (i) PTL[2] is a simple binary
knapsack problem, (ii) the solution to PTL[2] is
independent of { t j}, and (iii) Z is minimized if we
assign product i with negative c i to class 1 and assign
product i with positive c i to class 2. Since c i=

r iD-diR<0 if and only if PAIi > D
R

, an optimal
solution to PTL[2] can be obtained by taking the
products by PAI-nonincreasing order and assigning
the first m products to class 1 where m is an integer

such that dm
rm
≥
D
R

. Note that if di
r i

= D
R

, the product i

can be assigned to either class 1 or class 2. Hence, P*
is one of the partitions based on a PAI- nonincreasing
ordering.

From Proposition 1, the greedy algorithm, which
solves PTL[2], can be summarized as follows:

ALGPTL[2]
Step 1. Compute v= D

R
.

Step 2. For i=1 to n, do
 Begin
 If PAIi ≥ v, the assign product i to C*1.
 otherwise, assign product i to C*2
 End

Proposition 2 ALGPTL[2] solves PTL[2] in O(n).

Proof: As shown in ALGPTL[2], Step 1 and Step 2
each requires O(n). Since P* is an optimal solution to
PTL[2] if and only if P* satisfies PAIi > DR ≥PAIj
for i ∈ C*1, j ∈ C*2, ALGPTL[2] solves PTL[2] in
O(n).

3.2 Restriction of space requirement : r i = r

Proposition 3. If r i = r for all i, then P* is one of
the partitions based on a PAI-nonincreasing
ordering.

Proof: Consider a partition, P = {C1,C2}. Choose
product s from C1 and product t from C2 such that

ds= min i∈C1(d i) and dt= max i∈C2(d i) (9)

Define δ= dt-ds. Let P' be a partition resulted
from swapping product s and t. Since r i= r for all i,

using equation (3), we have

E(SC2∣P)= 1
D
(D1T1+D2T2) (10)

E(SC2∣P')= 1
D
{ (D1+δ)T1+(D2-δ)T2} (11)

Subtracting equation (11) from equation (10) gives

 v = E(SC2∣P) - E(SC2∣P') = δ
D
(T2-T1) (12)

Since (T2-T1)≥0, v ≥0 if and only if δ ≥0.
Hence if dt ≥ ds, then swapping two products s and t
does not increase the expected SC travel time. In the
similar manner, continuing to swap two products
satisfying both equation (9) and δ ≥0 results in a di
(or PAI)-nonincreasing ordering eventually.

3.3 Restriction of retrieval rate : di = d

Proposition 4. If di= d for all i, then P* is one of
the partition based on a PAI-nonincreasing
ordering.

Proof: Consider a partition, P = {C1,C2}. Choose
product s from C1 and product t from C2 such that

r s= max i∈C1(d i) and r t= min i∈C2(r i) (13)

Define δ = r s-rt and assume that δ ≥ 0. Let P' be
a partition resulted from swapping product s and t.
Since di= d for all i, using equation (3), we have

E(SC2∣P)= 2
D (

D1
R1
∑
j∈A1
t j+

D2
R2
∑
j∈A2
t j) (14)

E(SC2∣P')=

 2
D (

D1
R1-δ

∑
j∈A1-Ar

t j+
D2
R2+δ

∑
j∈A2+Ar

t j) (15)

where Ar is the set of storage locations resulted
from swapping two products and can be represented as
Ar= { (R1-δ+1),(R1-δ+2),…, R1} as shown in

<Figure 1>. Note that (R1-δ)>0 since R1 ≥ rs> rs

-r t=δ. Let Tr be the expected SC travel time to Ar.
Then, we have,

2 ∑
j∈Ar
tj = δTr (16)

2 ∑
j∈Ak
t j = RkTk for k=1, 2 (17)

Using equation(16) and equation(17), we have,

 v = E(SC2∣P) - E(SC2∣P')

226 Moonhee Yang

Table 2. All possible 2-class-based storage layouts

Partition D1 R1 CAI1 D2 R2 CAI2 E(SC2)

+{{1},{2,3,4}} 9.0 10 0.900 2.7 20 0.135 2.3231

 {{2},{1,3,4}} 0.7 4 0.175 11.0 26 0.423 -

 {{3},{1,2,4}} 1.0 6 0.167 10.7 24 0.446 -

 {{4},{1,2,3}} 1.0 10 0.100 10.7 20 0.535 -

+{{1,2},{3,4}} 9.7 14 0.693 2.0 16 0.125 2.2991

{{1,3},{2,4}} 10.0 16 0.625 1.7 14 0.121 2.2906

+{{1,4},{2,3}} 10.0 20 0.500 1.7 10 0.170 2.6325

 {{2,3},{1,4}} 1.7 10 0.170 10.0 20 0.500 -

 {{2,4},{1,3}} 1.7 14 0.121 10.0 16 0.625 -

 {{3,4},{1,2}} 2.0 16 0.125 9.7 14 0.693 -

+{{1,2,3},{4}} 10.7 20 0.535 1.0 10 0.100 2.5368

+{{1,2,4},{3}} 10.7 24 0.446 1.0 6 0.167 2.7806

+{{1,3,4},{2}} 11.0 26 0.423 0.7 4 0.175 2.8429

 {{2,3,4},{1}} 2.7 20 0.135 9.0 10 0.900 -

= δ{D1(R2+δ)(Tr-T1)+D2(R1-δ)(T2-Tr)}

D(R1-δ)(R2+δ)

(18)

Since (Tr-T1)≥0, (R1-δ)≥0, and (T2-Tr)≥0,
v ≥0. Hence if r s ≥ rt, swapping two products s and
t does not increase the expected SC travel time. In the
similar manner, continuing to swap two products
satisfying equation (13) and δ ≥0 results in a r i-non-
decreasing ordering or PAI-nonincreasing ordering
eventually.

Figure 1. Ar resulted from swapping two products.

As proved in the special cases above, P* is one of
the partition based on a PAI-nonincreasing ordering. It
follows that an optimal solution to the special cases
can be represented as (N*1) where N*1 denotes the first
N*1 products of a PAI-nonincreasing ordering.

4. Counterexam ple

As discussed in Section 3, it seems likely that an
optimal solution to PTN[2] is one of the partitions
based on a PAI-nonincreasing ordering. However, this
is not true since we have a counterexample as follows.

Counterexample : = { (r i,d i),i=1,…,4} = {(10,
9), (4, 0.7), (6, 1.0), (10, 1.0)}, t j=1 for j=1,...,16
and 2 for j=17,...,30.

<Table 2> shows all possible partitions to the above
counterexample. As shown in the table, P*= {C*1,C*2}
= {{1, 3}, {2, 4}} with E(SC*2∣P*)=2.2906. It can be
observed that P* is not based on PAI-nondecreasing
ordering, {1, 2, 3, 4}.

5. A H euristic Algorithm and Perfor-
 m ance Bound

5.1 Some Basic Properties of PTN[2]
For convenience, define the activity index of class k

(CAIk) as Dk
Rk

. Consider the following property

P/ D station

Analysis and Optimization of a 2-Class-based Dedicated Storage System 227

indicating that an optimal solution to PTN[2] is one of
the partitions based on a CAI-nonincreasing ordering.

Property 5. If P*= {C*1,C*2}is optimal to PTN[2],
then P* satisfies CAI*1≥CAI*2.

Proof: It suffices to show that if a partition, P=
{C1,C2}, satisfies CAI1<CAI2, then P is not optimal.

Let E(SCK) and E(SC*K) be the expected SC travel
time and the expected minimum SC travel time given
K classes respectively. Since E(SC2) ≥ E(SC1) if
and only if CAI1≥CAI2, it follows that there exists
P* such that E(SC2∣P) > E(SC1) ≥ E(SC2∣P

*).
Thus P is not optimal.

From Property 5, in order to obtain an optimal
solution to PTN[2], it suffices to enumerate the
partitions satisfying CAI1≥CAI2. However, it can be
shown that the enumeration method is still intractable
since the total number of partitions based on a CAI-
nonincreasing ordering is not a polynomial function of
n, i. e., (2 n-1-1). Note that the number of feasible
solutions to PTN[2] is (2 n-2). Now consider the
following property assuming that CAI1≥CAI2.

Property 6. For CAI1≥CAI2,
(i) If there exists product i in C2 such that PAIi≥
 CAI1, then assign product i to class 1 does not

increase the expected SC travel time.
(ii) If there exists product i in C1 such that PAIi≥,
 CAI2then assign product i to class 2 does not

increase the expected SC travel time.

Proof: (i) Consider a partition P = {C1,C2}. Then
E(SC2∣P) can be written as,

E(SC2∣P)=
D1
D (

1
R1
∑
j∈A1
t j)+

D2
D (

1
R2
∑
j∈A2
t j)
(19)

Suppose that product i with PAIi= d
r
≥ CAI1 has

been assigned to C2. Now, reallocate product i from
C2 to C1. Let P' be the resulting partition. Let Ar be

the set of storage locations extended in A1 by moving
product i to class 1, i. e., Ar= {R1+1,R1+2,…,R1+r}.
Then, the number of storage locations for class 1 and
class 2 in P' will be (R1+r), (R2-r), and their
corresponding retrieval rates will be (D1+d), (D2-d),
respectively. Hence E(SC2∣P') can be expressed as,

 E(SC2∣P')=
D1+d

D (1
R1+r

∑
j∈A1∪Ar

t j)
 + D2-d

D (1
R2-r

∑
j∈A2-Ar

t j) (20)

Let Tk and Tr be the expected SC travel time to
zone k in P and Ar respectively. Since ∑

j∈A1∪Ar
t j=

R1T1+rTr and ∑
j∈A2-Ar

t j=R2T2-rTr, we have

v = E(SC2∣P)- E(SC2∣P')

 = r
(R1+r)(R2-r)D

R1(R2-r)(Tr-T1)

 (PAIi-CAI1)+R2(R1+r)(T2-Tr)
 (PAIi-CAI2) (21)

Since R2-r > 0, Tr-T1≥0, T2-Tr≥0, PAIi≥
CAI1≥CAI2, it follows that v ≥0.

(ii) Now, move product i with PAIi= d
r
≤ CAI2

from C1 to C2. Let P" be the resulting partition. In the
similar manner above, we have,

v' = E(SC2∣P)- E(SC2∣P'')
 = r

(R1-r)(R2+r)D
R1(R2+r)(T' r-T1)

 (CAI1-PAIi)+R2(R1-r)(T2-T' r)
 (CAI2-PAIi) (22)

 where T' r is the expected SC travel time to A' r=
{R1-r+1,…,R1}. Since R1-r > 0, T' r-T1≥0,
T2-T' r≥0, PAIi≤CAI2≤CAI1, it follows that v'
≥0.

From the above property, a property below can be
derived, which can be used for checking whether a
partition to PTN[2] is optimal or not.

Property 7.
(i) If PAIi≥CAI*1, then i∈C*1.
(i) If PAIi≤CAI*2, then i∈C*2.

Proof: Trivial from Property 6.

It can be observed that Property 7 fails the optima-
lity check if there is at least a product with PAIi such
that CAI*1 >PAIi >CAI*2. However, the following pro-
perty never fails.

228 Moonhee Yang

Property 8. If P*= {C*1,C*2} is optimal to PTN[2],
then
for i∈C*1,
R*1(R

*
2+r i)(T' r-T

*
1)(CAI

*
1-PAIi)+

 R*2(R*1-r i)(T*2-T' r)(CAI*2-PAIi)≤0,
for i∈C*2,
R*1(R

*
2-r i)(Tr-T

*
1)(PAI i-CAI

*
1)+

 R*2(R*1+r i)(T*2-Tr)(PAIi-CAI*2)≤0.

Proof: Trivial from both equation (21) and equation
(22) in Property 6.

5.2 A Heuristic Algorithm and an Example
We state a heuristic algorithm, ALGPTN[2], which

consists of three phases; initialization phase, local search
phase, and optimality checking phase. In the initia-
lization phase, we find a PAI-nonincreasing ordering,
OPAI, and find a starting solution, {CT1,CT2} and
(NT1). In the local search phase, we generate a set of

candidate solutions as follows. As proved in Property
6 and 7, product i with PAIi such that CAI*1> PAIi>
CAI*2 may or may not be assigned to C*1. Hence we

find NL and NH such that dNL
rNL

< CAIT1 and dNH
rNH

>

CAIT2 and the products which need to be swapped
are products NL-th through NH-th in OPAI. The num-
ber of swaps is determined as an integer constant δ
such that δ = min { (NT1-NL+1),(NH-NT1+1)}.
Next, for i = 1, ..., δ, we swap (NL+i-1)-th product
in CT1 with (NT1+i)-th product in CT2 and find our
solution {Co1,Co2} which may or may not give the
minimum expected SC travel time. In the optimality
checking phase, the optimality is checked using
Property 8. Our algorithm can be summarized as
below.

ALGPTN[2]:

(Initialization Phase)
Step 1. ESCMIN ← big value, PT ← {CT1,CT2}=
 {∅,∅}
Step 2. Take products by PAI-nonincreasing order,
 OPAI= {1,2,…,n}.
Step 3. For i=1 to (n-1), do
 Begin

PT ← {CT1,CT2}= { {1,…,i},{i+1,…,n}}
 Compute E(SC2∣PT)
 If(E(SC2∣PT) < ESCMIN) then

 Begin
 ESCMIN ← E(SC∣PT)
 NT1 ← i
 End
End
PT ← {CT1,CT2}=
{ {1,2,…,NT1},{NT1+1,NT1+2,…,n}}

Compute (CAIT1,CAIT2).

(Local Search Phase)
Step 4. (Generate a set of candidate solutions, CX

from NT1.)
 Find the first NL and the first NH such that
dNL
rNL

< CAIT1 and dNH
rNH

> CAIT2.

Step 5. (Swapping)
 δ ← min ((NT1-NL+1),(NH-NT1+1))
 Po = {Co1,Co2} ← {CT1,CT2}
 If (δ≠0) then

Begin
 For i=1 to δ, do

 Begin
 C1 ← CT1-{NL+i-1}+{NT1+i}

 C2 ← CT2-{NT1+i}+{NL+i-1}

 Compute E(SC2∣P)
 If(E(SC2∣P) < ESCMIN) then
 Begin
 ESCMIN ← E(SC∣P)
 Po = {Co1,Co2} ← {C1,C2}
 End
 C1,C2 ← ∅

 End
End

(Optimality Check Phase)
Step 6. If Property 8 holds, then print “The solution,

{C
o
1,C

o
2} is optimal with E(SC∣Po)”

otherwise, print “The solution, {Co1,Co2} is
near optimal with E(SC∣Po)”

Proposition 9. The time complexity of ALGPTL[2]
is O(n2).

Proof : It can be checked that Step 1, 4, and 6
requires O(n), and Step 2 requires O(n log n), Step 3
and Step 5 requires O(n2). It follows that the time
complexity of ALGPTN[2] is O(n2).

Example : { (r i,d i)}={(10, 9), (4, 0.7), (6, 1.0), (10,
1.0)}, t j=1 for j=1, ..., 16 and 2 for j=17, ..., 30.

Analysis and Optimization of a 2-Class-based Dedicated Storage System 229

(Initialization Phase)
Step 1. ESCMIN ← big value
Step 2. OPAI={1, 2, 3, 4}
Step 3. E(SC2∣{ {1},{2,3,4}}) ←2.3231
 E(SC2∣{ {1,2},{3,4}}) ←2.2991
 E(SC2∣{ {1,2,3},{4}}) ←2.5368
 NT1 ←2
 PT ← {CT1,CT2}= { {1,2},{3,4}}
 (CAIT1,CAIT2) ← (0.693, 0.125)

(Local Search Phase)

Step 4. NL ←2 since d2
r 2

=0.175 < 0.693 = CAIT1

 NH ←3 since d3
r 3

=0.167 < 0.125 = CAIT2
Step 5. (Swapping)
 δ ← min ((NT1-NL+1),(NH-NT1))

 = min(1, 1) =1
 C1 ← CT1-{NL+i-1}+{NT1+i}

 = {1, 2} - {2} + {3} = {1, 3}
 C2 ← CT2-{NT1+i}+{NL+i-1}

 = {3, 4} - {3} + {2} = {2, 4}
 E(SC2∣{ {1,3},{2,4}} ← 2.2906 < ESCMIN

 = 2.2991
 Po= {Co1,Co2} ← {{1, 3}, {2, 4}}

(Optimality Check Phase)
Step 6. Since Property 8 holds, “The solution, {{1,

3}, {2, 4}} is optimal with 2.2906”

5.3 Performance Ratio Bound

Consider η, the ratio of E(SC2∣Po) to E(SC2∣P*)
as shown in the following proposition.

Proposition 10.

 η = E(SC2∣P
o)

E(SC2∣P
*)
≤
E(SC1)

E(SC*n)

Proof : Since ALGPTN[2] enumerates a subset of
the partitions based on a PAI-nonincreasing ordering,
Po satisfies CAI1≥CAI2. Thus E(SC 2∣Po)≤E(SC1).

Since E(SC*n) ≤ E(SC2∣P
*), the proposition holds.

6. Conclusion

In this paper, we introduce a 2-class-based dedicated
storage problem, PTN[2]. Since our strong conjecture

is that PTN[2] is NP-hard, we provide three solvable
cases including PTL[2] by relaxing PTN[2]. We prove
that an optimal solution to the solvable cases is based
on a PAI-nonincreasing ordering. Especially, we prove
that an optimal solution to PTL[2] is based on a PAI-
nonincreasing ordering and provide a greedy algorithm
with O(n). Our first conjecture is that an optimal
solution to PTN[2] is based on a PAI-nonincreasing
ordering. However, we find with a counterexample
that a solution based on the PAI index does not always
give an optimal solution to PTN[2]. Nevertheless,
using the PAI indexes still an effective approach to
solving PTN[2] in the sense that it guarantees a better
class-based storage layout than a randomized storage
layout in terms of the expected SC travel time. Thus,
an efficient heuristic algorithm, ALGPTN[2], for solving
PTN[2] is constructed based on a PAI-nonincreasing
ordering with performance ratio bound. In addition,
some properties for PTN[2] are analyzed.

As discussed in this paper, our strong conjecture is
that PTN[2] is NP-hard. This can be investigated
further. Also, the performance ratio bound could be
improved for the tighter bound or a worst-case bound
in order to show that our ALGPTN[2] works well
theoretically.

Reference

Bozer, Y. A. and Cho, M. S. (1998), Throughput Perfor-
mance of Automated Storage/Retrieval Systems under
Stochastic Demand, Working paper, The University of
Michigan, Ann Arbor, MI, 48109-2117.

Chang, D. T., Wen, U. P., and Lin, J. T. (1995), The Impact
of Acceleration Deceleration on Travel Time Models for
Automated Storage-Retrieval Systems, IIE Transactions,
27(1), 108-111.

Cho, M. S. and Bozer, Y. A. (2001), Storage Capacity
Estimation for Automated Storage/Retrieval Systems under
Stochastic Demand, Journal of Korean Institute of Industrial
Engineers, 27(2), 169-175.

Francis, R. L. and White, J. A. (1974), Facility Layout and
Location : an Analytical Approach, Prentice Hall.

Hausman, W. H., Schwartz, L. B., and Graves, S. C.(1976),
Optimal Storage Assignment in Automatic Warehousing
Systems, Management Science, Vol.22, No.6, pp629-638.

Lee, M. K. (1998), An Approach to Determining Storage
Capacity of an Automated Storage/Retrieval System under
Full Turnover Based Policy, Journal of Korean Institute
of Industrial Engineers, 24(4), 579-589.

Tompkins, J. A. and White, J. A. (1984), Facilities Planning,
John Wiley and Sons Inc., NY., pp 335-338.

Yang, M. (1992), Optimization of Layout Design in an AS/
RS for Maximizing its Throughput Rate, Journal of the
Korea Institute of Industrial Engineers, Vol.18, No.2.

