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1.  Introduction

A unit load can be defined as a unit to be moved or 
handled at one time. A storage system can be called a 
unit load storage system where unit loads are stored, 
handled, and retrieved. Automated storage/retrieval 
systems (AS/RS) or rack-supported storage systems 
can be the type of unit load systems (Yang, 1988). 
K-class-based dedicated storage policy or simply 
K-class-based storage policy employs K zones in 
which lots from a class of products, are stored 
randomly. Tompkins and White(1984) pointed out that 
class-based storage with randomized storage within 
each class can yield both the throughput benefits of 
dedicated storage and the space benefits of rando- 
mized storage. Also they suggested that in order to 
achieve both benefits, three to five classes may be 

defined.
There have appeared many papers such as Cho 

(2001), Lee(1998), Bozer(1998), Chang(1995), and 
Hausman(1976) so on, which focused on both benefits 
or either the throughput benefits or the space benefits 
based on simulation techniques under some operating 
policies. 

In this paper, based on combinatorics, we define a 
deterministic 2-class-based dedicated storage problem 
in a unit load system and provide an effective heuristic 
algorithm in addition to basic theoretical results of 
2-class-based dedicated storage policy. We make “the 
constant-space assumption” that the number of storage 
locations for a class is not the maximum aggregate 
inventory position for a class but the sum of space 
requirement for products assigned to the class. In fact, 
the constant-space assumption is made since the 
problem for minimizing the maximum aggregate 
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Table 1.  Notation List

Notation  Meaning
Ak  set of storage locations assigned to zone k
Ck  a set of products assigned to class k

CAIk  = Dk
Rk

, class activity index of class k

 D  = ∑
K

k=1
Dk = ∑

n

i=1
d i

d i  average retrieval rate of product i, for i=1, ..., n

Dk
 = ∑

i∈Ck
di, average retrieval rate from class k

E(SCK)  expected SC travel time given K classes
E(SCK∣LAY)  expected SC travel time given LAY
E(SCK∣P)  expected SC travel time given P

 K  number of classes or zones used in a unit load system
 LAY  = {A1,A2,…,AK}, a layout given K zones
 n  number of products
 P  = {C1,C2,…,CK}, a partition given K classes

PAIi  = di
r i

, product activity index of product i, for i=1, ..., n 

r i  space requirement of product i when it is replenished

 R  = ∑
K

k=1
Rk = ∑

n

i=1
r i

Rk  = |Ak|, number of storage locations required for zone k

t j  one-way travel time to storage location j
Tk  expected SC travel time from an i/o point to zone k

inventory position is well known to be NP-hard. In 
addition, our strong conjecture is that our 2-class- 
based dedicated storage problem seems to be NP-hard 
even if it is made.

In section 2, we introduce a 2-class-based dedicated 
storage problem denoted by PTN[2]. In section 3, 
since our strong conjecture is that PTN[2] is NP-hard, 
we provide three solvable cases by relaxing PTN[2]. 
We prove that an optimal solution to the solvable 
cases is based on a PAI-nonincreasing ordering. 
Especially, we prove that an optimal solution to a 
solvable case denoted by PTL[2] is based on a PAI- 
nonincreasing ordering and provide a greedy algorithm 
with O(n). In section 4, we give a counter- example in 
order to show that a solution based on a PAI- 
nonincreasing ordering does not always give an 
optimal solution to PTN[2]. In section 5, an effective 
heuristic algorithm with O(n2), denoted by ALGPTN 
[2], for solving PTN[2] is constructed based on a 
PAI-nonincreasing ordering since the PAI indexes still 
an effective approach to solving PTN[2] in the sense 
that it guarantees a better class-based storage layout 
than a randomized storage layout in terms of the 

expected SC travel time. In addition, some properties 
for PTN[2] are analyzed as well as a performance ratio 
bound.

For convenience to reader, the list of symbols used 
in this paper is given in <Table 1>. To denote 
optimality for a decision variable, a superscript (*) 
will be used at the upper right side of each symbol.

2.  2-Class-Based Storage Problem

Our storage system consists of R storage locations 
each of which accommodates only one unit load. The 
storage/retrieval operation is based on the 2-zone- 
based storage policy and within each zone, a storage 
location is equally likely to be selected for a storage 
operation, i. e., random assignment rule (RAN rule) is 
used. 

The expected one-way travel time from a Pick-up/ 
Deposit (P/D) station to storage location j is given as
t j for j=1, 2, ..., R. Without loss of generality, it is 



224 Moonhee Yang

assumed that t 1≤t2≤…≤tR. Let Ak be a set of 
storage locations assigned to zone k for k=1, 2. We 
assign the first |A1| storage locations to A1 based on 
the t j-nondecreasing ordering and the remaining 
storage locations to A2 where |X| denotes the car- 
dinality of set X. It follows that A1= {1,2,…, |A1| } 
and A2= { |A1|+1, |A1|+2, …,R}.

An arriving replenishment lot of a product i, the size 
of which is r i in unit load, contains a single product 
and are assigned randomly to open storage locations in 
one of two separate zones by using an storage/retrieval 
(S/R) machine or operator which or who can carry 
only one unit load at a time. Let Ck be the set (or 
class) of products assigned to zone k. Then space 
requirement or the number of storage locations 
required for class k, Rk, can be expressed as

Rk = |Ak| = ∑
j∈Ck
rj (1)

The average demand rate for a product i, di unit 
loads/unit time, which is defined as the average 
number of retrievals per unit time, is given as a real 
constant in advance. Retrievals are performed on 
first-in first-out basis. The average demand rate from 
zone k, Dk is obtained as ∑

i∈Ck
di. Since practically a 

class contains at least one product, it can be assumed 
that |Ck| ≥ 1. 

Our objective is to minimize E(SC2), the expected 
single command travel time as follows. The expected 
SC travel time to zone k, Tk, can be expressed as

Tk= 2
|Ak|

∑
j∈Ak
t j (2)

Since the probability of visiting zone k is Dk
D

,

E(SC2) can be expressed as equation (4) by replacing
Tk in equation (3) with equation (2).

E(SC 2)= ∑
2

k=1

Dk
D
Tk (3)

E(SC 2)=
2
D ∑

2

k=1

Dk
|Ak|

∑
j∈Ak
t j (4) 

where D = D1+D2. Hence our problem can be 
described as 

PTN[2] : Given n products with { (r i,d i),i=1,2,
…, n }, {t j,j= 1,2,…,M}, find an optimal partition,
P* = {C*1,C*2} such that we minimize

Minimize { (r i,d i),i=1,2,…, n}

Z(P)=E(SC2∣P)=
2
D ∑

2

k=1

Dk
Rk

∑
j∈Ak
t j

subject to |Ck| ≥ 1 for k=1, 2
  Dk = ∑

i∈Ck
di 

  Rk = |Ak| = ∑
i∈Ck
ri 

3.  Solvable Cases of PTN[2]

Since our strong conjecture is that PTN[2] is NP-hard, 
we will provide some special solvable cases of PTN[2] 
by restricting PTN[2]. Define the activity index of 

product i ( PAIi) as di
r i

.

3.1  Restriction of travel time : t j = pj+q

Proposition 1. If tj = pj+q for all j, then P* is one 
of the partitions based on a PAI- nonincreasing 
ordering.

Proof : If we replace t j with (pj+q), equation (2) can 
be reduced to

  T1= p(R1+1)+2q (5)
  T2= p(2R1+R2+1)+2q (6)

Replacing T1, T2 of equation (4) with equation (5) 
and equation (6), we have,

    E(SC2) = D1
D
T1+

D2
D
T2

               = p
D
{D+DR+(R1D-D1R)}+2q      (7)

Let xi=1 if product i is assigned to zone 1 and xi=0 
otherwise. Let c i= r iD-diR. Since R1 = ∑

n

i=1
r ix i and

D1 = ∑
n

i=1
d ix i, R1D-D1R = ∑

n

i=1
c ix i. Hence equation 

(7) can be further reduced to

  E(SC2)  = p
D (D+DR+ ∑

n

i=1
c ix i)+2q (8)

Since D, R, p and q are constant, and each class 
must contain at least one product, the relaxed PTN[2] 
can be formulated as

PTL[2] : Minimize Z = ∑
n

i=1
c ix i

            subject to ∑
n

i=1
x i ≤ (n-1)
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               xi ∈ {0,1}

It can be observed that (i) PTL[2] is a simple binary 
knapsack problem, (ii) the solution to PTL[2] is 
independent of { t j}, and (iii) Z is minimized if we 
assign product i with negative c i to class 1 and assign 
product i with positive c i to class 2. Since c i=

r iD-diR<0 if and only if PAIi > D
R

, an optimal 
solution to PTL[2] can be obtained by taking the 
products by PAI-nonincreasing order and assigning 
the first m products to class 1 where m is an integer 

such that dm
rm
≥
D
R

. Note that if di
r i

= D
R

, the product i 

can be assigned to either class 1 or class 2. Hence, P* 
is one of the partitions based on a PAI- nonincreasing 
ordering.

From Proposition 1, the greedy algorithm, which 
solves PTL[2], can be summarized as follows:

ALGPTL[2]
Step 1. Compute v= D

R
.

Step 2. For i=1 to n, do
        Begin
          If PAIi ≥ v, the assign product i to C*1.
          otherwise, assign product i to C*2
        End

Proposition 2 ALGPTL[2] solves PTL[2] in O(n).

Proof: As shown in ALGPTL[2], Step 1 and Step 2 
each requires O(n). Since P* is an optimal solution to 
PTL[2] if and only if P* satisfies PAIi > DR ≥PAIj 
for i ∈ C*1, j ∈ C*2, ALGPTL[2] solves PTL[2] in 
O(n).

3.2  Restriction of space requirement : r i = r

Proposition 3. If r i = r for all i, then P* is one of 
the partitions based on a PAI-nonincreasing 
ordering.

Proof: Consider a partition, P = {C1,C2}. Choose 
product s from C1 and product t from C2 such that

ds= min i∈C1(d i) and dt= max i∈C2(d i) (9)

Define δ= dt-ds. Let P' be a partition resulted 
from swapping product s and t. Since r i= r for all i, 

using equation (3), we have

E(SC2∣P)= 1
D
(D1T1+D2T2) (10)

E(SC2∣P')= 1
D
{ (D1+δ)T1+(D2-δ)T2} (11)

Subtracting equation (11) from equation (10) gives

  v = E(SC2∣P) - E(SC2∣P') = δ
D
(T2-T1) (12)

Since (T2-T1)≥0, v ≥0 if and only if δ ≥0. 
Hence if dt ≥ ds, then swapping two products s and t 
does not increase the expected SC travel time.  In the 
similar manner, continuing to swap two products 
satisfying both equation (9) and δ ≥0 results in a di
(or PAI)-nonincreasing ordering eventually.

3.3  Restriction of retrieval rate : di =  d

Proposition 4. If di= d for all i, then P* is one of 
the partition based on a PAI-nonincreasing 
ordering.

Proof: Consider a partition, P = {C1,C2}. Choose 
product s from C1 and product t from C2 such that

r s= max i∈C1(d i) and r t= min i∈C2(r i) (13)

Define δ = r s-rt and assume that δ ≥ 0. Let P' be 
a partition resulted from swapping product s and t. 
Since di= d for all i,  using equation (3), we have

E(SC2∣P)= 2
D (

D1
R1
∑
j∈A1
t j+

D2
R2
∑
j∈A2
t j) (14)

E(SC2∣P')=

    2
D (

D1
R1-δ

∑
j∈A1-Ar

t j+
D2
R2+δ

∑
j∈A2+Ar

t j) (15)

where Ar is the set of storage locations resulted 
from swapping two products and can be represented as
Ar= { (R1-δ+1),(R1-δ+2),…, R1} as shown in 

<Figure 1>. Note that (R1-δ)>0 since R1 ≥ rs> rs

-r t=δ. Let Tr be the expected SC travel time to Ar. 
Then, we have,

2 ∑
j∈Ar
tj = δTr (16)

2 ∑
j∈Ak
t j = RkTk for k=1, 2 (17)

Using equation(16) and equation(17), we have,

   v = E(SC2∣P) - E(SC2∣P') 
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Table 2.  All possible 2-class-based storage layouts

Partition D1 R1 CAI1 D2 R2 CAI2 E(SC2)

+{{1},{2,3,4}} 9.0 10 0.900 2.7 20 0.135 2.3231

 {{2},{1,3,4}} 0.7 4 0.175 11.0 26 0.423 -

 {{3},{1,2,4}} 1.0 6 0.167 10.7 24 0.446 -

 {{4},{1,2,3}} 1.0 10 0.100 10.7 20 0.535 -

+{{1,2},{3,4}} 9.7 14 0.693 2.0 16 0.125 2.2991

*{{1,3},{2,4}} 10.0 16 0.625 1.7 14 0.121 2.2906*

+{{1,4},{2,3}} 10.0 20 0.500 1.7 10 0.170 2.6325

 {{2,3},{1,4}} 1.7 10 0.170 10.0 20 0.500 -

 {{2,4},{1,3}} 1.7 14 0.121 10.0 16 0.625 -

 {{3,4},{1,2}} 2.0 16 0.125 9.7 14 0.693 -

+{{1,2,3},{4}} 10.7 20 0.535 1.0 10 0.100 2.5368

+{{1,2,4},{3}} 10.7 24 0.446 1.0 6 0.167 2.7806

+{{1,3,4},{2}} 11.0 26 0.423 0.7 4 0.175 2.8429

 {{2,3,4},{1}} 2.7 20 0.135 9.0 10 0.900 -

= δ{D1(R2+δ)(Tr-T1)+D2(R1-δ)(T2-Tr)}

D(R1-δ)(R2+δ)
 
(18)

Since (Tr-T1)≥0, (R1-δ)≥0, and (T2-Tr)≥0, 
v ≥0. Hence if r s ≥ rt, swapping two products s and 
t does not increase the expected SC travel time. In the 
similar manner, continuing to swap two products 
satisfying equation (13) and δ ≥0 results in a r i-non- 
decreasing ordering or PAI-nonincreasing ordering 
eventually.

Figure 1. Ar resulted from swapping two products.

As proved in the special cases above, P* is one of 
the partition based on a PAI-nonincreasing ordering. It 
follows that an optimal solution to the special cases 
can be represented as (N*1) where N*1 denotes the first
N*1 products of a PAI-nonincreasing ordering. 

4.  Counterexam ple

As discussed in Section 3, it seems likely that an 
optimal solution to PTN[2] is one of the partitions 
based on a PAI-nonincreasing ordering. However, this 
is not true since we have a counterexample as follows.

Counterexample : = { (r i,d i),i=1,…,4} = {(10, 
9), (4, 0.7), (6, 1.0), (10, 1.0)}, t j=1 for j=1,...,16 
and 2 for j=17,...,30. 

<Table 2> shows all possible partitions to the above 
counterexample. As shown in the table, P*= {C*1,C*2}
= {{1, 3}, {2, 4}} with E(SC*2∣P*)=2.2906. It can be 
observed that P* is not based on PAI-nondecreasing 
ordering, {1, 2, 3, 4}. 

5.  A H euristic Algorithm  and Perfor-
     m ance Bound

5.1  Some Basic Properties of PTN[2]
For convenience, define the activity index of class k 

(CAIk) as Dk
Rk

. Consider the following property 

P/ D station
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indicating that an optimal solution to PTN[2] is one of 
the partitions based on a CAI-nonincreasing ordering. 

Property 5. If P*= {C*1,C*2}is optimal to PTN[2], 
then P* satisfies CAI*1≥CAI*2.

Proof: It suffices to show that if a partition, P=
{C1,C2}, satisfies CAI1<CAI2, then P is not optimal. 

Let E(SCK) and E(SC*K) be the expected SC travel 
time and the expected minimum SC travel time given 
K classes respectively. Since E(SC2) ≥ E(SC1) if 
and only if CAI1≥CAI2, it follows that there exists
P* such that E(SC2∣P) > E(SC1) ≥ E(SC2∣P

*). 
Thus P is not optimal.

From Property 5, in order to obtain an optimal 
solution to PTN[2], it suffices to enumerate the 
partitions satisfying CAI1≥CAI2. However, it can be 
shown that the enumeration method is still intractable 
since the total number of partitions based on a CAI- 
nonincreasing ordering is not a polynomial function of 
n, i. e., (2 n-1-1). Note that the number of feasible 
solutions to PTN[2] is (2 n-2). Now consider the 
following property assuming that CAI1≥CAI2.

Property 6. For CAI1≥CAI2,
(i) If there exists product i in C2 such that PAIi≥
   CAI1, then assign product i to class 1 does not 

increase the expected SC travel time.
(ii) If there exists product i in C1 such that PAIi≥, 
    CAI2then assign product i to class 2 does not 

increase the expected SC travel time.

Proof: (i) Consider a partition P = {C1,C2}. Then
E(SC2∣P) can be written as,

E(SC2∣P)=
D1
D (

1
R1
∑
j∈A1
t j)+

D2
D (

1
R2
∑
j∈A2
t j)
(19)

Suppose that product i with PAIi= d
r
≥ CAI1 has 

been assigned to C2. Now, reallocate product i from
C2 to C1. Let P' be the resulting partition. Let Ar be 

the set of storage locations extended in A1 by moving 
product i to class 1, i. e., Ar= {R1+1,R1+2,…,R1+r}. 
Then, the number of storage locations for class 1 and 
class 2 in P' will be (R1+r), (R2-r), and their 
corresponding retrieval rates will be (D1+d), (D2-d), 
respectively. Hence E(SC2∣P') can be expressed as,

 E(SC2∣P')=
D1+d

D ( 1
R1+r

∑
j∈A1∪Ar

t j)
                         + D2-d

D ( 1
R2-r

∑
j∈A2-Ar

t j) (20)

Let Tk and Tr be the expected SC travel time to 
zone k in P and Ar respectively. Since ∑

j∈A1∪Ar
t j=

R1T1+rTr and ∑
j∈A2-Ar

t j=R2T2-rTr, we have 

v = E(SC2∣P)- E(SC2∣P') 

   = r
(R1+r)(R2-r)D

R1(R2-r)(Tr-T1)

    (PAIi-CAI1)+R2(R1+r)(T2-Tr) 
    (PAIi-CAI2)     (21)

Since R2-r > 0, Tr-T1≥0, T2-Tr≥0, PAIi≥
CAI1≥CAI2, it follows that v ≥0. 

(ii) Now, move product i with PAIi= d
r
≤ CAI2 

from C1 to C2. Let P" be the resulting partition. In the 
similar manner above, we have,

v' = E(SC2∣P)- E(SC2∣P'')
    = r

(R1-r)(R2+r)D
R1(R2+r)(T' r-T1)

     (CAI1-PAIi)+R2(R1-r)(T2-T' r) 
     (CAI2-PAIi)     (22)

  where T' r is the expected SC travel time to A' r=
{R1-r+1,…,R1}. Since R1-r > 0, T' r-T1≥0,
T2-T' r≥0, PAIi≤CAI2≤CAI1, it follows that v'
≥0. 

From the above property, a property below can be 
derived, which can be used for checking whether a 
partition to PTN[2] is optimal or not.

Property 7. 
(i) If PAIi≥CAI*1, then i∈C*1.
(i) If PAIi≤CAI*2, then i∈C*2.

Proof: Trivial from Property 6.

It can be observed that Property 7 fails the optima- 
lity check if there is at least a product with PAIi such 
that CAI*1 >PAIi >CAI*2. However, the following pro- 
perty never fails.
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Property 8. If P*= {C*1,C*2} is optimal to PTN[2], 
then
for i∈C*1,
R*1(R

*
2+r i)(T' r-T

*
1)(CAI

*
1-PAIi)+

    R*2(R*1-r i)(T*2-T' r)(CAI*2-PAIi)≤0,
for i∈C*2, 
R*1(R

*
2-r i)(Tr-T

*
1)(PAI i-CAI

*
1)+

    R*2(R*1+r i)(T*2-Tr)(PAIi-CAI*2)≤0.

Proof: Trivial from both equation (21) and equation  
(22) in Property 6.

5.2  A Heuristic Algorithm and an Example
We state a heuristic algorithm, ALGPTN[2], which 

consists of three phases; initialization phase, local search 
phase, and optimality checking phase. In the initia- 
lization phase, we find a PAI-nonincreasing ordering,
OPAI, and find a starting solution, {CT1,CT2} and
(NT1). In the local search phase, we generate a set of 

candidate solutions as follows. As proved in Property 
6 and 7, product i with PAIi such that CAI*1> PAIi>
CAI*2 may or may not be assigned to C*1. Hence we 

find NL and NH such that dNL
rNL

< CAIT1 and dNH
rNH

>

CAIT2 and the products which need to be swapped 
are products NL-th through NH-th in OPAI. The num- 
ber of swaps is determined as an integer constant δ 
such that δ = min { (NT1-NL+1),(NH-NT1+1)}. 
Next, for i = 1, ..., δ, we swap (NL+i-1)-th product 
in CT1 with (NT1+i)-th product in CT2 and find our 
solution {Co1,Co2} which may or may not give the 
minimum expected SC travel time. In the optimality 
checking phase, the optimality is checked using 
Property 8. Our algorithm can be summarized as 
below.

ALGPTN[2]:

(Initialization Phase)
Step 1. ESCMIN ← big value, PT ← {CT1,CT2}=
          {∅,∅}
Step 2. Take products by PAI-nonincreasing order,
          OPAI= {1,2,…,n}.
Step 3. For i=1 to (n-1), do
            Begin

PT ← {CT1,CT2}= { {1,…,i},{i+1,…,n}}
  Compute E(SC2∣PT)
  If( E(SC2∣PT) < ESCMIN ) then

    Begin
      ESCMIN ← E(SC∣PT)
      NT1 ← i
    End
End
PT ← {CT1,CT2}=
{ {1,2,…,NT1},{NT1+1,NT1+2,…,n}}

Compute (CAIT1,CAIT2).

(Local Search Phase)
Step 4. (Generate a set of candidate solutions, CX 

from NT1.)
 Find the first NL and the first NH such that
dNL
rNL

< CAIT1 and dNH
rNH

> CAIT2.

Step 5. (Swapping)
       δ ← min ( (NT1-NL+1),(NH-NT1+1))
       Po = {Co1,Co2} ← {CT1,CT2}
        If (δ≠0) then

Begin
  For i=1 to δ, do

            Begin
    C1 ← CT1-{NL+i-1}+{NT1+i}

    C2 ← CT2-{NT1+i}+{NL+i-1}

     Compute E(SC2∣P)
    If( E(SC2∣P) < ESCMIN ) then
      Begin
       ESCMIN ← E(SC∣P)
       Po = {Co1,Co2} ← {C1,C2}
      End
  C1,C2 ← ∅

  End
End

(Optimality Check Phase)
Step 6. If Property 8 holds, then print “The solution,

{C
o
1,C

o
2} is optimal with E(SC∣Po)”

otherwise, print “The solution, {Co1,Co2} is 
near optimal with E(SC∣Po)”

Proposition 9. The time complexity of ALGPTL[2] 
is O(n2).

Proof : It can be checked that Step 1, 4, and 6 
requires O(n), and Step 2 requires O(n log n), Step 3 
and Step 5 requires O(n2). It follows that the time 
complexity of ALGPTN[2] is O(n2).

Example : { (r i,d i)}={(10, 9), (4, 0.7), (6, 1.0), (10, 
1.0)}, t j=1 for j=1, ..., 16 and 2 for j=17, ..., 30. 
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(Initialization Phase)
Step 1. ESCMIN ← big value
Step 2. OPAI={1, 2, 3, 4}
Step 3. E(SC2∣{ {1},{2,3,4}}) ←2.3231
      E(SC2∣{ {1,2},{3,4}}) ←2.2991
      E(SC2∣{ {1,2,3},{4}}) ←2.5368
      NT1 ←2
      PT ← {CT1,CT2}= { {1,2},{3,4}}
      (CAIT1,CAIT2) ← (0.693, 0.125)

(Local Search Phase)

Step 4. NL ←2 since d2
r 2

=0.175 < 0.693 = CAIT1

          NH ←3 since d3
r 3

=0.167 < 0.125 = CAIT2
Step 5. (Swapping)
         δ ← min ( (NT1-NL+1),(NH-NT1)) 

   = min(1, 1) =1
         C1 ← CT1-{NL+i-1}+{NT1+i} 

   = {1, 2} - {2} + {3} = {1, 3}
         C2 ← CT2-{NT1+i}+{NL+i-1} 

   = {3, 4} - {3} + {2} = {2, 4}
       E(SC2∣{ {1,3},{2,4}} ← 2.2906 < ESCMIN 

   = 2.2991
       Po= {Co1,Co2} ← {{1, 3}, {2, 4}}

(Optimality Check Phase)
Step 6. Since Property 8 holds, “The solution, {{1, 

3}, {2, 4}} is optimal with 2.2906”

5.3  Performance Ratio Bound

Consider η, the ratio of E(SC2∣Po) to E(SC2∣P*) 
as shown in the following proposition.

Proposition 10.

 η = E(SC2∣P
o)

E(SC2∣P
*)
≤
E(SC1)

E(SC*n)

Proof : Since ALGPTN[2] enumerates a subset of 
the partitions based on a PAI-nonincreasing ordering,
Po satisfies CAI1≥CAI2. Thus E(SC 2∣Po)≤E(SC1). 

Since E(SC*n) ≤ E(SC2∣P
*), the proposition holds.

6.  Conclusion

In this paper, we introduce a 2-class-based dedicated 
storage problem, PTN[2]. Since our strong conjecture 

is that PTN[2] is NP-hard, we provide three solvable 
cases including PTL[2] by relaxing PTN[2]. We prove 
that an optimal solution to the solvable cases is based 
on a PAI-nonincreasing ordering. Especially, we prove 
that an optimal solution to PTL[2] is based on a PAI- 
nonincreasing ordering and provide a greedy algorithm 
with O(n). Our first conjecture is that an optimal 
solution to PTN[2] is based on a PAI-nonincreasing 
ordering. However, we find with a counterexample 
that a solution based on the PAI index does not always 
give an optimal solution to PTN[2]. Nevertheless, 
using the PAI indexes still an effective approach to 
solving PTN[2] in the sense that it guarantees a better 
class-based storage layout than a randomized storage 
layout in terms of the expected SC travel time. Thus, 
an efficient heuristic algorithm, ALGPTN[2], for solving 
PTN[2] is constructed based on a PAI-nonincreasing 
ordering with performance ratio bound. In addition, 
some properties for PTN[2] are analyzed. 

As discussed in this paper, our strong conjecture is 
that PTN[2] is NP-hard. This can be investigated 
further. Also, the performance ratio bound could be 
improved for the tighter bound or a worst-case bound 
in order to show that our ALGPTN[2] works well 
theoretically.
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