References
- Efron, B., 'Bootstrap Methods: Another Look at the Jackknife,' The Annals of Statistics 7 (1979), 1-26 https://doi.org/10.1214/aos/1176344552
- Efron, B., 'Jackknife-After-Bootstrap Standard Errors and Influence Functions (with discussion),' Journal of the Royal Statistical Society, Series B 54 (1992), 83-111
- Efron, B., and Tibshirani, R., 'Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Acyuracy,' Statistical Science 1 (1986), 54-77 https://doi.org/10.1214/ss/1177013815
- Efron, B., and Tibshirani, R., An Introduction to the Bootstrap, Chapman & Hall. Inc.. New York 1993
- Hill, C., Cartwright, P., and Arbaugh, J., 'Jackknifing the Bootstrap: Some Monte Carlo Evidence,' Communications in Statistics: Simulation and Computation 26 (1997), 125-139 https://doi.org/10.1080/03610919708813371
- Kunsch, H., 'The Jackknife and the Bootstrap for General Stationary Observations,' The Annals of Statistics 17 (1989), 1217-1241 https://doi.org/10.1214/aos/1176347265
- Liu,R., and Singh, K., Moving Blocks Jackknife and Bootstrap Capture Weak Dependence. In: LePage, R., Billard, L. (Eds.), Exploring the Limit of Bootstrap. Wiley, NY (1992), 225-248
- Mosteller, F., and Tukey, J., Data Analysis and Regression: A Second Course in Statistics, Addison - Wesley, Reading, MA 1977
- Park, D., and Willemain, T., 'The Threshold Bootstrap and Threshold Jackknife,' Computational Statistics and Data Analysis 31 (1999), 187-202 https://doi.org/10.1016/S0167-9473(99)00008-0
- Park, D., Kim, Y., Shin, K., and Willemain, T., 'Simulation Output Analysis Using the Threshold Bootstrap,' European Journal of Operational Research 134 (2001), 17-28 https://doi.org/10.1016/S0377-2217(00)00209-5
- Quenouille, M. (1949), 'Approximating Tests of Correlation in Time Series,' Journal of the Royal Statistical Society, Series B. 11 (1949), 68-84 https://doi.org/10.1017/S0305004100025123
- Tukey, J. (1958), 'Bias and Confidence Interval in Not Quite Large Samples (Abstract),' The Annals of Mathematical Statistics 29 (1958), 614 https://doi.org/10.1214/aoms/1177706647