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1.  Introduction

Process capability analysis is an important and integral 
part of the statistical process control activities for the 
continuous improvement of quality and productivity. 
The capability of a process is frequently measured by a 
process capability index (PCI) which is designed to 
provide a common and easily understood language for 
quantifying its performance with a single-number 
summary, and is a dimensionless function of process 
parameters and specifications. C p  and Cpk  are widely 
used PCIs based on univariate quality measurements. 
However, capability analyses involving more than one 
quality characteristics are sometimes of interest, and 

multivariate statistical techniques can be used to analyze 
several quality characteristics simultaneously.

A difficulty of defining multivariate PCIs is that 
there is no consensus on the methodology for 
assessing capability, which arises since the multivariate 
relationship among the quality characteristics may or 
may not be reflected in the engineering specifications. 
In general, the upper specification limit (USL ) and 
the lower specification limit (LSL ) may be given for 
each quality characteristic and these specification 
ranges, taken together, form a rectangle or hypercube. 
A multivariate PCI should compare the shapes, 
locations, sizes, and orientations arising from the 
statistical distribution with those from the engineering 
specifications, which can lead to very different defini- 
tions of capability in the multivariate domain.
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Several multivariate PCIs have been proposed. 
Hubele et al. (1991) proposed a multivariate capability 
vector which consists of three components, a ratio of 
area or volumes, a relative location of the process and 
specification centers, and a relative location of 
maximum and minimum of the probability contour 
and the specification limits. Taam et al. (1993) 
proposed MCpm  which is the ratio of specification 
region to a scaled 99.73 percent process region. Karl et 
al. (1994) considered geometric dimensioning and 
tolerancing which is a set of standards to describe the 
physical features and their specified tolerances. Wang 
and Chen (1998-99) suggested to use principal 
components analysis. For more detailed reviews, see 
Kotz and Lovelace (1998) and Wang et al. (2000).

These methods, however, are confined to the case of 
multivariate normal populations. In practice, the nor- 
mality assumption is usually difficult to justify and is 
often not appropriate. For example, the measurements 
from chemical processes, filling processes, and semi- 
conductor processes are often skewed. Recently, 
Polansky (2001) proposed a nonparametric approach 
based on a kernel estimate of an integral of a multi- 
variate density. This procedure can do without the nor- 
mality assumption, but may be somewhat complicated 
for practitioners and may need a large amount of data 
to perform well. Therefore, it is necessary to develop a 
multivariate PCI for skewed populations which is 
simple and performs reasonably well even with a small 
data set.

This paper proposes methods of constructing simple 
multivariate PCIs for skewed populations based on the 
multivariate version of a 'weighted standard deviation 
(WSD) method of Chang and Bai (2002). This method 
adjusts the variance-covariance matrix in accordance 
to the degree of skewness of the distribution by using 
different factors in computing the deviations above 
and below the process mean and approximates the 
probability density function (PDF) using several multi- 
variate normal distributions with adjusted variance- 
covariance matrix.

This paper is organized as follows: Section 2 reviews 
the WSD method. Section 3 proposes two multivariate 
WSD PCIs using T 2  and modified process region 
(Hubele et al. (1991)) approaches. The T 2  approach 
uses Hotelling's T 2  statistic to reduce the dimension 
of quality characteristics, and the process region 
approach defines the PCI as the ratio of the volume of 
engineering tolerance region to the volume of modi- 
fied process region. The performance of the proposed 
PCIs is investigated in Section 4, and the finite sample 
properties are studied in Section 5.

2.  W eighted Standard Deviation(W SD)  
M ethod

Chang and Bai (2001) and Chang et al. (2002) propos- 
ed a WSD method to construct univariate control 
charts and PCIs for skewed populations, respectively. 
The WSD method is based on the idea that standard 
deviation σX  can be divided into upper and lower 
deviations, σWU  and σWL , which represent the degree of 
the dispersions of the upper and lower sides from 
mean μX , respectively. WSDs σWU  and σWL  are 
obtained as σWU= PX σX  and σWL=(1-PX ) σX , where 
PX= Pr {X≤μX } . An asymmetric PDF can be 
approximated with two normal PDFs with the same 
mean μX  but different standard deviations 2σWU  and 
2σWL . Details can be found in Chang and Bai (2001).

Chang and Bai (2002) suggested a multivariate 
WSD method and constructed a WSD T 2  control 
chart for skewed populations. The multivariate WSD 
method adjusts the variance-covariance matrix with 
WSDs of each quality characteristic. However, we 
should not tamper with the correlation matrix since it 
represents the dependent structure of quality 
characteristics and a multivariate control chart must 
reflect this dependency. If the variance-covariance 
matrix is adjusted and the correlation matrix is 
maintained, the scale of the conventional control 
region is adjusted in accordance with skewness but the 
direction is maintained.

< Figure 1> depicts the iso-PDF contours of the 
original distribution, bivariate normal distribution, and 
approximated distribution by the WSD method with 
two quality characteristics, X  and Y . For simplicity, 
the correlation of X  and Y  is set to zero. < Figure 
1(a)> describes the iso-PDF contours of the original 
bivariate distribution, which show that the distribution 
of (X,Y )  is skewed. < Figure 1(b)> shows that the 
iso-PDF contour of the bivariate normal distribution is 
very different from that of original distribution and the 
rate of incorrect decisions will be large if the standard 
method based on the normality assumption is used. 
< Figure 1(c)> represents the concept of a multivariate 
version of the WSD method. Similarly to the 
univariate case, the original bivariate PDF can be 
approximated with four segments each from four 
bivariate normal PDFs which are obtained with the 
combination of normal PDFs derived from marginal 
PDFs of X  and Y . < Figure 1(c)> shows that the 
iso-PDF contour of the original skewed distribution is 
approximated with four parts each from the iso-PDF 
contour of the derived bivariate normal distributions, 
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①, ②, ③, and ④. It is similar to the iso-PDF contour 
of the original PDF, and we can see that the WSD 
method can effectively approximate the PDF of a 
bivariate skewed distribution.
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Figure 1. Iso-PDF contours and concept of 
   multivariate WSD Method.

Assume that ν -variate random vector X=(X 1,…,

X ν )
T  is distributed with mean vector μ=(μ1,…,μν)T  

and variance-covariance matrix

Σ=

ꀎ

ꀚ

︳︳︳︳︳︳︳︳︳︳

ꀏ
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where ‘T ’ denotes the transpose of a vector or 
matrix, σ j  is the standard deviation of X j , and ρ ij  is 
the correlation coefficient of X i  and X j . For the 
approximation such as < Figure 1(c)>, the variance- 
covariance matrix should be adjusted as follows:

  Σ W= W Σ W =
ꀎ
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2 

, (2)

where

                  W = diag {W 1,…,W ν } , 

Wj={ 2Pj , if Xj>μ j ,
2(1-Pj ), otherwise ,

(3)

σWj =W j σ j , and Pj= Pr {Xj≤μ j} . If X j  is greater 
than μ j , the PDF related to X j  is modified by 
adjusting the j th row and column of the variance- 
covariance matrix using upper deviation 2P jσ j  in 
place of σ j . Otherwise, the j th row and column of the 
variance-covariance matrix is adjusted using lower 
deviation 2(1-Pj) σ j . Note that correlation matrix 
ρ={ρ ij }  does not change after the variance-covariance 

matrix is adjusted. This WSD method approximates 
the original PDF with segments from 2 ν  multivariate 
normal distributions. < Figure 1(c)> is obtained with 
four bivariate normal distributions with the same mean 
vector μ=(μX,μY )T  but different variance-covariance 
matrices as follows:

Σ 1=[ ]{2(1-PX)σX }
2

ρXY⋅2(1-PX)σX⋅2PYσY
ρXY⋅2(1-PX)σX⋅2PYσY {2PYσY }

2
,

Σ 2=[ ]{2PXσX }
2

ρXY⋅2PXσX⋅2PYσY
ρXY⋅2PXσX⋅2PYσY {2PYσY }

2
,

Σ 3= [ ]{2(1-PX)σX }
2 ρXY⋅2(1-PX)σX⋅2(1-PY)σY

ρXY⋅2(1-PX)σX⋅2(1-PY)σY {2(1-PY)σY }
2

,

Σ 4=[ ]{2PXσX }
2 ρXY⋅2PXσX⋅2(1-PY)σY

ρXY⋅2PXσX⋅2(1-PY)σY {2(1-PY)σY}
2

.

Since the WSD method approximates the PDF of the 
original distribution using normal distributions, the 
standard statistical methods based on the normality 
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assumption can be used with the approximated distri- 
bution.

3.  Multivariate PCIs Based on the W SD  
Method

3.1 T 2  Approach

We now propose multivariate T 2  WSD PCIs. The 
T 2  statistic is often used in multivariate control 
charts. The univariate Cpk  is defined as the ratio of the 
distance of the specification limits from the process 
mean to the actual process spread 3σX :

     Cpk=min {
USL-μX
3σX

,
LSL-μX
3σX }

                = min {
USLZ
3
,
LSLZ
3 } , (4)

where USLZ  and LSLZ  are the standardized dis- 
tances from the mean to the upper and lower specifi- 
cation limits, respectively, and the number 3 means the 
99.865th percentile of the standard normal distribution 
which is the same as χ20.0027(1) . Therefore, formula 
(4) can be extended to the multivariate case as follows:

C pk;T 2 = min { L T1 ρ
-1L 1

χ
2
0.0027(ν)

,…,
L T2νρ

-1L 2ν

χ
2
0.0027(ν) }

        = min {
L T

2
,1

χ
2
0.0027(ν)

,…,
L T

2
,2
ν

χ
2
0.0027(ν) } , (5)

where L i  is the coordinates of edge i  among 2ν  
edges of the hypercube made by standardized 
specification limits USLZk=(USLk-μ k)/σ k  and 
LSLZk= (LSLk-μ k)/σ k , k=1,2,…,ν . The order of 
edges is meaningless, but we assume that 
L 1=(USLZ 1,…,USLZ ν )

T  and L 2
ν=(LSLZ 1,…,

LSLZ ν )
T . For example, if ν=2 , L 1=(USLZ 1,

USLZ 2 )
T  and L 4=(LSLZ 1,LSLZ 2 )

T , and L 2=
(USLZ 1 ,LSLZ 2 )

T  and L 3=(LSLZ 1,USLZ 2 )
T  or 

L 2=(LSLZ 1,USLZ 2 )
T  and L 3= (USLZ 1 ,LSLZ 2 )

T . 
If all the correlation coefficients are positive, only L 1

 
and L 2 ν

 can be considered since they have the 
shortest distances from the mean. < Figure 2 > 
describes the T 2  approach for a bivariate distribution 
with a positive correlation, and shows that C pk;T 2

 is 
the ratio the standardized specification lengths L T

2
,1

 
and L T 2,4

 to the process dispersion χ20.0027(2) .
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Figure 2.  Concept of T 2  approach.

When the distribution is skewed, the WSD method 
can be applied, so that formula (5) can be extended to

CWSDpk;T 2 = min { L W
T

1 ρ
-1L W1

χ20.0027(ν)
,…,

L W
T

2νρ
-1L W2ν

χ20.0027(ν) } 

= min {
LWT 2,1

χ20.0027(ν)
,…,

LWT 2,2 ν

χ20.0027(ν) } , (6)

where the k th component of L W
i

 isUSLZWk=(USLk
-μ k)/σ

W
k

 or LSLZWk= (LSLk-μ k)/σ
W
k

, k=1,2,…,ν .

3.2  Modified Process Region Approach
Hubele et al. (1991) proposed a 'modified process 

region approach' which defines a multivariate PCI as 
the ratio of the volume of engineering tolerance region 
to the volume of modified process region. < Figure 3 > 
illustrates the concept of the method. The modified 
process region can be obtained by drawing the 
smallest rectangle around the elliptical probability 
contour. The edges of the rectangle are defined as the 
upper and lower process limits, UPLi  and LPL i , 
i=1,…,ν , determined by solving the system of 
equations of first derivatives, with respect to X i , of 
the quadratic form

(X-μ )TΣ -1(X-μ ) = χ20.0027(ν ) .

The solutions to the equation provide the upper and 
lower limits as follows:

UPLi=μ i+
χ20.0027(ν )⋅det( Σ

-1
i )

det( Σ
-1)

,
(7) 

LPLi=μ i-
χ20.0027(ν )⋅det(Σ

-1
i )

det(Σ -1)
,

where det(⋅)  is the determinant of a matrix and Σ i  
is the matrix obtained from Σ by deleting row i  and 
column i . The approach defines the multivariate PCI 
Cp;M  as
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Table 1.  Data for the example

i 1 2 3 4 5 6 7 8 9 10 11 12 13
Xi1 143 200 160 181 148 178 162 215 161 141 175 187 187
Xi2 34.3 57.0 47.5 53.4 47.8 51.5 45.9 59.1 48.4 47.3 57.3 58.5 58.2
i 14 15 16 17 18 19 20 21 22 23 24 25

Xi1 186 172 182 177 204 178 196 160 183 179 194 181
Xi2 57.0 49.4 57.2 50.6 55.1 50.9 57.9 45.5 53.9 51.2 57.5 55.6

Cp;M=[∏
ν

i=1(
USLi-LSLi
UPLi-LPLi )]

1/ν

.  (8)

If the process mean and specification midpoint are 
incorporated in the PCI and the specification limits are 
standardized, Cpk;M  can be defined as

Cpk;M=[∏
ν

i=1
min {

USLZi
UPLZi

,
LSLZi
LPLZi }]

1/ν

,  (9)

where

UPLZi =
χ20.0027(ν)⋅det( ρ

-1
i )

det( ρ -1)
,

LPLZi = -
χ20.0027(ν)⋅det( ρ

-1
i )

det( ρ -1)
=-UPLZi.

(10)

 

process region 

specification
region 

modified process region 

Figure 3.  concept of modified process region 
      approach.

When the distribution is skewed, the WSD method 
can be applied. USLWZi  and LSLWZi  replace USLZi  
and LSLZi  in formula (10), respectively, and hence 
CWSDpk;M  is defined as

CWSDpk;M=[∏
ν

i=1
min {

USLWZi
UPLZi

,
LSLWZi
LPLZi }]

1/ν

. (11)

3.3  Estimation of Parameters
To use PCIs in practice, the parameters must be 

estimated. If a random sample of size n  is obtained, 
μ  and Σ  can be estimated by the sample mean

X=
1
n ∑

n

i=1
X i

and the sample variance-covariance matrix

S=
1
n-1 ∑

n

i=1
(X i- X )(X i- X )

T ,

respectively. The correlation coefficient of j th and 
k th random variables ρ jk  can be estimated by

ρ̂ jk=
S ij
S jj S kk

,

where S jk is the ( j,k )th element of S . P j  can be 
estimated by the number of observations less than or 
equal to the sample mean of j th quality characteristic 
X j

 as

P̂ j=
1
n ∑

n

i=1
I(X j-Xij) ,

where I(x)=1  if x≥0  or I(x)=0  otherwise.

3.4  An Illustrative Example
We illustrate the use of the proposed WSD PCIs 

with the bivariate process data in Sultan (1986) 
dealing with 25 observations of the Brinell hardness 
(X 1 ) and the tensile strength (X 2 ) of a process. 
These data were also used by Chan et al. (1988), Chen 
(1994), and Wang and Chen (1998-99). < Table 1 > 
presents the data, and < Figure 4 > depicts the 
histograms of X 1  and X 2  and shows that the 
marginal distributions of X 1  and X 2  are slightly 
skewed to the left. The specification limits for X 1  and 
X 2  were set at (112.7, 2451.3) and (32.7, 73.3), 
respectively.
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Figure 4. Histograms of data in <table 1>.

From the data, X 1=177.2 , X 2=52.32 , σ̂ 1=

18.38 , σ̂ 2= 5.80 , ρ̂ 12=0.80 , P̂ 1=0.40 , and 
P̂ 2=0.48. We can obtain LSLZ 1= (LSL 1-X 1)/σ 1̂=

(112.7-177.2)/18.38=-3.51 , USLZ 1=3.49 ,LSLZ 2
=-3.38 , USLZ 2= 3.62 , LSLWZ 1=LSLZ 1/2(1- P̂ 1)
=-2.93 , USLWZ1=4.36 , LSLWZ 2=-3.25 , USLWZ 2  
=3.77 . Also,

L T 2,1= L
T
1 ρ

-1L 1= [ ]-3.51 -3.38

      [ ]1 0.8
0.8 1 [ ]-3.51

-3.38
=13.57 ,

L T 2,4= L
T
4 ρ

-1L 4= [ ]3.49 3.62

  [ ]1 0.8
0.8 1 [ ]3.49

3.62
=14.08 ,

LWT 2,1= L
WT

1 ρ
-1L 1= [ ]-2.93 -3.25

      [ ]1 0.8
0.8 1 [ ]-2.93

-3.25
=10.87 ,

LWT 2,4= L
WT

4 ρ
-1L 4= [ ]4.36 3.77

  [ ]1 0.8
0.8 1 [ ]4.36

3.77
=19.23 ,

UPLZi=
χ20.0027(2)⋅det( ρ

-1
i )

det( ρ -1)

                = 11.83⋅2.78
2.78

=3.44

and LPLZi=-UPLZi=-3.44  for i=1,2 . Then the 
estimated PCIs are:

The T 2  approach ―

Ĉ pk;T 2 = min {
L T 2, 1

χ20.0027(2)
,

L T 2, 4

χ20.0027(2) }
                 = min { 13.57

11.83
,
14.08
11.83 }

                 = min {1.07 , 1.09 }=1.07

Ĉ WSDpk;T 2 = min {
LWT 2, 1

χ20.0027(2)
,

LWT 2, 4

χ20.0027(2) }
                 = min { 10.87

11.83
,
19.23
11.83 }

                 = min {0.96 , 1.27 }=0.96

The modified process region approach ―

Ĉ pk;M =[∏
2

i=1
min {

USLZi
UPLZi

,
LSLZi
LPLZi }]

1/2

          =[min { 3.493.44 ,
-3.51
-3.44 }⋅

              min { 3.623.44
,
-3.38
-3.44 }]

1/2

          =[1.01⋅0.98]1/2=0.99

Ĉ WSDpk;M =[∏
2

i=1
min {

USL
W
Zi

UPLZi
,
LSL

W
Zi

LPLZi }]
1/2

          =[min { 4.363.44 ,
-2.93
-3.44 }⋅

              min { 3.773.44
,
-3.25
-3.44 }]

1/2

          =[0.85⋅0.94]1/2=0.89

Ĉ
WSD
pk;T

2  and Ĉ WSDpk;M  are smaller than Ĉ pk;T 2
 and 

Ĉ pk;M , respectively, and this shows that the process is 
less satisfactory than Ĉ pk;T 2

 and Ĉ pk;M  indicate.

4.  Perform ance of the W SD PCIs

The performances of the proposed PCIs are studied 
when the distribution is multivariate normal, 
multivariate lognormal, Hougaard's bivariate Weibull, 
or Cheriyan and Ramabhadran's bivariate gamma. See 
Kotz et al. (2000) for detailed discussions on theses 
distributions. For all cases, it is assumed that 
USLi=3  and LSLi=-3 , and the distribution is 
shifted and scaled to produce the same value of μ i=0  
and σ i=1 , i=1,…,ν .

< Tables 2 > gives C pk;T 2
, and Cpk;M  as the sample 

size n  increases when the distribution is bivariate 
normal and the correlation coefficient ρ  is nonnegative. 
It also gives nonconforming proportion per million      
(NPM ) and MCp . MCp  is calculated by -(1/3)Φ-1

( (NPM/2)×10- 6)  since NPM×10-6=2Φ(-3Cp)  
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Table 2.  NPM , MCp , C pk;T 2
  and Cpk;M for bivariate normal distributions

ρ NPM MCp
n=50 n=100 n=200 n=∞

C pk;T 2 Cpk;M C pk;T 2 Cpk;M C pk;T 2 Cpk;M C pk;T 2 Cpk;M

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5,392
5,389
5,377
5,352
5,308
5,236
5,120
4,940
4,655
4,179

0.928
0.928
0.928
0.928
0.929
0.931
0.933
0.937
0.943
0.955

1.233
1.174
1.123
1.077
1.036
1.000
0.969
0.938
0.911
0.885

0.850
0.850
0.850
0.851
0.850
0.851
0.852
0.851
0.852
0.851

1.227
1.168
1.118
1.073
1.032
0.998
0.964
0.935
0.909
0.882

0.855
0.854
0.855
0.854
0.854
0.855
0.854
0.855
0.856
0.854

1.226
1.168
1.118
1.073
1.033
0.997
0.965
0.936
0.909
0.885

0.859
0.859
0.859
0.859
0.859
0.859
0.859
0.859
0.859
0.859

1.234
1.176
1.126
1.082
1.043
1.007
0.975
0.946
0.919
0.895

0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.872

n=∞ : parameters-known case

Table 3.  NPM , MCp , C pk;T 2
, CWSDpk;T 2 , Cpk;M   and CWSDpk;M  for bivariate distributions (parameters known)

(a) ρ=0.3

dist. (γ1,γ2) NPM MCp C pk;T
2 CWSDpk;T2 Cpk;M CWSDpk;M

lognormal

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

20,295
25,883
27,700
31,332
33,095
34,841

0.774
0.743
0.734
0.718
0.710
0.703

1.082
1.082
1.082
1.082
1.082
1.082

0.962
0.927
0.907
0.889
0.868
0.845

0.872
0.872
0.872
0.872
0.872
0.872

0.776
0.746
0.727
0.717
0.699
0.682

Weibull

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

19,344
27,495
30,221
35,243
37,948
40,513

0.780
0.735
0.722
0.702
0.692
0.683

1.082
1.082
1.082
1.082
1.082
1.082

0.948
0.904
0.880
0.856
0.829
0.801

0.872
0.872
0.872
0.872
0.872
0.872

0.764
0.726
0.702
0.690
0.667
0.645

gamma

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

19,602
27,168
31,228
33,245
37,270
39,731

0.778
0.736
0.718
0.710
0.694
0.686

1.082
1.082
1.082
1.082
1.082
1.082

0.955
0.908
0.876
0.856
0.820
0.781

0.872
0.872
0.872
0.872
0.872
0.872

0.770
0.729
0.696
0.690
0.659
0.630

under the normality assumption, where Φ(⋅)  is the 
cumulative standard normal distribution function. If 
the value of PCI is close to that of MCp  or MCpk , the 
PCI can be considered to describe the process capa- 
bility very well in terms of nonconforming proportion. 
The Table shows that:

i) If the parameters are known ( n=∞), MCp  
slightly increases as the correlation coefficient ρ  
increases but C pk;T 2

 decreases and Cpk;M  does not 
change. Also, C pk;T 2

 overestimates the process 
capability when the correlation is low and 

underestimates it when the correlation is high, 
and Cpk;M  underestimates it for all ranges of 
correlation. For highly correlated normal popu- 
lations, C pk;T 2

 performs better than Cpk;M , and 
vise versa.

ii) If the parameters are unknown ( n=50,100,200 ), 
the biases of Ĉ pk;T 2

 and Ĉ pk;M  are negative.

< Table 3 > and < Table 4 > give C pk;T 2
, CWSDpk;T 2 , 

Cpk;M , and CWSDpk;M  for bivariate lognormal, Weibull, 
and gamma distributions with correlation ρ=0.3  or 
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(b) ρ=0.8

dist. (γ1,γ2) NPM MCp C pk;T
2 CWSDpk;T2 Cpk;M CWSDpk;M

lognormal

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

16,843
21,323
22,476
25,531
26,731
28,092

0.797
0.767
0.761
0.744
0.738
0.732

0.919
0.919
0.919
0.919
0.919
0.919

0.817
0.792
0.782
0.755
0.739
0.719

0.872
0.872
0.872
0.872
0.872
0.872

0.776
0.746
0.727
0.717
0.699
0.682

Weibull

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

16,961
23,458
25,271
29,334
30,989
32,840

0.796
0.755
0.746
0.726
0.719
0.711

0.919
0.919
0.919
0.919
0.919
0.919

0.805
0.775
0.766
0.727
0.707
0.680

0.872
0.872
0.872
0.872
0.872
0.872

0.764
0.726
0.702
0.690
0.667
0.645

gamma

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

15,352
*
*

24,558
*

28,625

0.808
*
*

0.749
*

0.730

0.919
*
*

0.919
*

0.919

0.811
*
*

0.727
*

0.664

0.872
*
*

0.872
*

0.872

0.770
*
*

0.690
*

0.630
*: not applicable

Table 4.  C pk;T 2
, CWSDpk;T 2 , Cpk;M  and CWSDpk;M  for bivariate distributions(parameters unknown)

(a) ρ=0.3

dist. (γ1,γ2)
n=50 n=100 n=200

C pk;T2 C
WSD
pk;T2 Cpk;M CWSDpk;M C pk;T2 C

WSD
pk;T 2 Cpk;M CWSDpk;M C pk;T2 C

WSD
pk;T 2 Cpk;M CWSDpk;M

lognormal

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

1.095
1.111
1.143
1.313
1.160
1.187

1.026
1.011
1.019
0.998
1.001
1.007

0.860
0.869
0.888
0.882
0.898
0.914

0.794
0.778
0.777
0.765
0.762
0.758

1.082
1.093
1.111
1.106
1.119
1.138

0.995
0.973
0.968
0.948
0.939
0.935

0.860
0.867
0.876
0.874
0.881
0.892

0.788
0.766
0.756
0.744
0.733
0.725

1.077
1.083
1.091
1.090
1.097
1.108

0.980
0.950
0.936
0.920
0.904
0.892

0.861
0.865
0.868
0.868
0.873
0.878

0.783
0.756
0.741
0.731
0.716
0.704

Weibull

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

1.085
1.108
1.141
1.127
1.158
1.193

1.002
0.982
0.984
0.953
0.953
0.958

0.856
0.870
0.886
0.880
0.897
0.918

0.782
0.760
0.751
0.735
0.726
0.722

1.076
1.089
1.102
1.101
1.118
1.135

0.975
0.942
0.927
0.906
0.893
0.881

0.857
0.863
0.871
0.871
0.880
0.891

0.775
0.743
0.725
0.713
0.698
0.685

1.074
1.080
1.090
1.086
1.096
1.105

0.960
0.922
0.905
0.880
0.862
0.841

0.859
0.863
0.869
0.866
0.872
0.877

0.769
0.735
0.716
0.701
0.683
0.665

gamma

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

1.091
1.115
1.152
1.135
1.174
1.211

1.103
0.992
0.987
0.960
0.954
0.943

0.858
0.869
0.887
0.881
0.901
0.920

0.788
0.762
0.744
0.737
0.722
0.705

1.079
1.092
1.111
1.106
1.119
1.141

0.984
0.950
0.930
0.909
0.882
0.861

0.858
0.864
0.874
0.872
0.877
0.890

0.780
0.747
0.722
0.714
0.687
0.667

1.076
1.082
1.094
1.089
1.098
1.109

0.970
0.928
0.905
0.883
0.854
0.822

0.860
0.863
0.869
0.867
0.872
0.877

0.776
0.737
0.710
0.702
0.675
0.649

ρ=0.8  and various skewnesses ( γ 1,γ 2 ). NPM  and 
MCp  are also given in < Table 3 >. The tables show 
that:

i) When the parameters are known, MCp  decreases 

as skewness increases and CWSDpk;T 2  and CWSDpk;M  
reflect such a phenomenon, i.e., they decrease as 
skewness becomes large whereas C pk;T 2

 and 
Cpk;M  remain constant; <Table 3>
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(b) ρ=0.8

dist. (γ1,γ2)
n=50 n=100 n=200

C pk;T2 C
WSD
pk;T

2 Cpk;M CWSDpk;M C pk;T 2 C
WSD
pk;T

2 Cpk;M CWSDpk;M C pk;T 2 C
WSD
pk;T

2 Cpk;M CWSDpk;M

lognormal

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

0.928
0.950
0.983
0.968
0.997
1.026

0.879
0.878
0.888
0.870
0.877
0.888

0.862
0.874
0.889
0.887
0.902
0.923

0.797
0.784
0.780
0.772
0.769
0.771

0.916
0.932
0.948
0.941
0.959
0.973

0.850
0.840
0.836
0.816
0.814
0.809

0.860
0.869
0.875
0.875
0.886
0.896

0.788
0.769
0.756
0.746
0.738
0.731

0.913
0.921
0.932
0.928
0.938
0.948

0.834
0.815
0.811
0.788
0.780
0.769

0.861
0.865
0.871
0.870
0.877
0.883

0.783
0.757
0.744
0.733
0.721
0.709

Weibull

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

0.923
0.947
0.995
0.968
1.007
1.032

0.866
0.857
0.870
0.839
0.848
0.847

0.858
0.870
0.891
0.883
0.903
0.922

0.785
0.761
0.757
0.740
0.736
0.728

0.914
0.928
0.951
0.939
0.956
0.975

0.836
0.817
0.815
0.783
0.774
0.766

0.858
0.865
0.876
0.872
0.881
0.894

0.776
0.746
0.732
0.716
0.700
0.688

0.912
0.918
0.931
0.925
0.937
0.944

0.821
0.794
0.791
0.755
0.744
0.724

0.861
0.863
0.870
0.867
0.875
0.879

0.770
0.735
0.717
0.702
0.686
0.667

gamma

(1,1)
(1,2)
(1,3)
(2,2)
(2,3)
(3,3)

0.924
*
*

0.960
*

1.009

0.868
*
*

0.820
*

0.791

0.861
*
*

0.886
*

0.922

0.793
*
*

0.742
*

0.709

0.915
*
*

0.931
*

0.959

0.841
*
*

0.771
*

0.727

0.859
*
*

0.871
*

0.891

0.783
*
*

0.715
*

0.669

0.913
*
*

0.921
*

0.938

0.827
*
*

0.750
*

0.698

0.861
*
*

0.867
*

0.879

0.778
*
*

0.702
*

0.651

Table 5.  NPM , MCp , C pk;T 2
, CWSDpk;T 2 , Cpk;M  and  CWSDpk;M  for 4-variate lognormal distributions 

    (parameters known)

case (γ 1,γ2,γ 3,γ 4 ) NPM MCp C pk;T2 CWSDpk;T2 Cpk;M CWSDpk;M

1

(1.0,0.5,1.0,0.5)
(1.5,1.0,1.0,1.5)
(1.5,1.5,2.5,2.5)
(0.5,2.5,2.0,1.5)

15,916
24,016
27,417
22,865

0.804
0.752
0.735
0.759

1.128
1.128
1.128
1.128

1.030
0.980
0.933
0.973

0.744
0.744
0.744
0.744

0.680
0.647
0.614
0.633

2

(1.0,0.5,1.0,0.5)
(1.5,1.0,1.0,1.5)
(1.5,1.5,2.5,2.5)
(0.5,2.5,2.0,1.5)

13,352
19,631
22,308
19,230

0.825
0.778
0.762
0.780

0.865
0.865
0.865
0.865

0.810
0.754
0.712
0.755

0.744
0.744
0.744
0.744

0.680
0.647
0.614
0.633

ii) When the parameters are unknown, C pk;T 2
 and  

Cpk;M  increase as skewness becomes large, 
whereas CWSDpk;T 2  and CWSDpk;M  decrease in most 
cases. All PCIs are overestimated especially 
when the sample size is small; < Table 4 >

iii) CWSDpk;M  is closer to MCp  in < Table 3(a)>, and 
CWSDpk;T 2  is closer to MCp  in < Table 3(b)> except 
for (γ 1,γ2 )= (1,2) . Also, < Table 4 > and addi- 
tional extensive study we have conducted indi- 
cate that CWSDpk;T 2  is closer to MCp  for highly 
correlated populations as sample size becomes 
large, and vise versa. This shows that the T 2  
approach is superior to the modified process 
region approach for highly correlated populations

in most cases, and vise versa.

< Table 5 > and < Table 6 > present PCIs for two 
4-variate lognormal distributions, where case 1 uses 
ρ 1  describing low positive correlations ( ρ ij< 0.5 ) and 

case 2 uses ρ 2  containing high correlations ( ρ ij≥0.5 ) 
as follows:

ρ 1=

ꀎ

ꀚ

︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳

1 0.2 0.3 0.1
1 0.2 0.4

1 0.3
1

,

ρ 2=

ꀎ

ꀚ

︳︳︳︳︳︳︳︳

ꀏ

ꀛ

︳︳︳︳︳︳︳︳

1 0.8 0.6 0.7
1 0.8 0.5

1 0.6
1

.
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Table 6.  C pk;T 2
, CWSDpk;T 2 , Cpk;M  and CWSDpk;M  for 4-variate lognormal distributions (parameters unknown)

case (γ1,γ2,γ3,γ 4 )
n=50 n=100 n=200

C pk;T2 C
WSD
pk;T 2 Cpk;M CWSDpk;M C pk;T2 C

WSD
pk;T 2 Cpk;M CWSDpk;M C pk;T 2 C

WSD
pk;T2 Cpk;M CWSDpk;M

1

(1.0,0.5,1.0,0.5)
(1.5,1.0,1.0,1.5)
(1.5,1.5,2.5,2.5)
(0.5,2.5,2.0,1.5)

1.169
1.186
1.228
1.207

1.122
1.099
1.097
1.111

0.729
0.735
0.750
0.743

0.682
0.665
0.650
0.659

1.141
1.151
1.173
1.165

1.077
1.038
1.013
1.045

0.731
0.734
0.742
0.740

0.683
0.658
0.632
0.649

1.131
1.135
1.149
1.142

1.054
1.009
0.976
1.007

0.734
0.735
0.740
0.737

0.683
0.653
0.625
0.641

2

(1.0,0.5,1.0,0.5)
(1.5,1.0,1.0,1.5)
(1.5,1.5,2.5,2.5)
(0.5,2.5,2.0,1.5)

0.895
0.915
0.963
0.963

0.902
0.885
0.895
0.906

0.730
0.739
0.754
0.748

0.684
0.671
0.655
0.664

0.874
0.886
0.911
0.913

0.859
0.823
0.805
0.831

0.732
0.736
0.743
0.742

0.684
0.661
0.634
0.651

0.866
0.871
0.888
0.887

0.836
0.787
0.762
0.793

0.734
0.735
0.741
0.740

0.683
0.654
0.626
0.643

Table 7.  Relative biases and MSEs of Ĉ WSDpk;T 2  and Ĉ WSDpk;M  for bivariate distributions

(a) ρ=0.3

dist. (γ1,γ2)

relative bias MSE

n=50 n=100 n=200 n=50 n=100 n=200

CWSDpk;T 2 C
WSD
pk;M CWSDpk;T 2 C

WSD
pk;M CWSDpk;T 2 C

WSD
pk;M CWSDpk;T 2 C

WSD
pk;M CWSDpk;T 2 C

WSD
pk;M CWSDpk;T 2 C

WSD
pk;M

lognormal

(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)

0.0604
0.0953
0.1214
0.1295
0.1553
0.1938

0.0204
0.0459
0.0650
0.0704
0.0895
0.1162

0.0360
0.0470
0.0625
0.0663
0.0801
0.1024

0.0163
0.0238
0.0366
0.0381
0.0475
0.0611

0.0172
0.0256
0.0334
0.0347
0.0448
0.0548

0.0085
0.0146
0.0207
0.0199
0.0268
0.0332

0.0306
0.0457
0.0587
0.0618
0.0755
0.0943

0.0122
0.0188
0.0255
0.0262
0.0327
0.0410

0.0154
0.0201
0.0246
0.0265
0.0311
0.0386

0.0068
0.0098
0.0130
0.0132
0.0157
0.0191

0.0072
0.0094
0.0114
0.0120
0.0146
0.0176

0.0035
0.0050
0.0068
0.0063
0.0080
0.0095

Weibull

(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)

0.0558
0.0844
0.1124
0.1125
0.1563
0.1949

0.0227
0.0436
0.0679
0.0628
0.0906
0.1151

0.0278
0.0394
0.0577
0.0573
0.0775
0.0994

0.0134
0.0214
0.0375
0.0326
0.0464
0.0581

0.0136
0.0222
0.0294
0.0286
0.0398
0.0501

0.0073
0.0131
0.0198
0.0164
0.0237
0.0296

0.0258
0.0375
0.0513
0.0496
0.0710
0.0895

0.0106
0.0165
0.0237
0.0218
0.0299
0.0372

0.0120
0.0152
0.0203
0.0208
0.0275
0.0346

0.0058
0.0079
0.0114
0.0106
0.0138
0.0164

0.0055
0.0071
0.0088
0.0091
0.0115
0.0146

0.0028
0.0040
0.0055
0.0049
0.0063
0.0078

gamma

(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)

0.0586
0.0943
0.1276
0.1232
0.1583
0.2000

0.0216
0.0469
0.0692
0.0673
0.0903
0.1161

0.0336
0.0463
0.0600
0.0596
0.0802
0.0997

0.0158
0.0251
0.0341
0.0330
0.0460
0.0579

0.0166
0.0227
0.0294
0.0305
0.0403
0.0525

0.0086
0.0127
0.0170
0.0172
0.0227
0.0315

0.0325
0.0478
0.0639
0.0627
0.0825
0.1026

0.0124
0.0186
0.0250
0.0250
0.0323
0.0393

0.0156
0.0202
0.0245
0.0258
0.0321
0.0400

0.0067
0.0091
0.0119
0.0116
0.0143
0.0172

0.0074
0.0094
0.0109
0.0119
0.0145
0.0179

0.0034
0.0046
0.0058
0.0055
0.0068
0.0081

The results are similar to the bivariate cases. Since 
the WSD PCIs is designed to reflect the skewness, the 
WSD PCIs decrease as skewness becomes large.

5.  Finite Sam ple Properties

The relative biases and mean square errors (MSEs) of 
CWSDpk;T 2  and CWSDpk;M  are investigated for small and 
moderate sample sizes. 10,000 values of deviations 
and squared deviations, each based on n=50,100,200  

random variates, are computed and averaged to obtain 
the relative bias and MSE. For all cases, it is assumed 
that USLi=3  and LSLi=-3 and the distribution is 
shifted and scaled to produce the same value of μ i=0  
and σ i=1 , i=1,2 .

< Table 7 > presents the relative biases and MSEs for 
bivariate lognormal, Weibull, and gamma distributions 
with ρ=0.3  or ρ=0.8 , and shows that:

i) For all cases, Ĉ WSDpk;T 2  and Ĉ WSDpk;M  overestimate the 
true value of CWSDpk;T 2  and CWSDpk;M .
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(b) ρ=0.8

dist. (γ1,γ2)

relative bias MSE

n=50 n=100 n=200 n=50 n=100 n=200

C
WSD
pk;T

2 CWSDpk;M CWSDpk;T 2 C
WSD
pk;M CWSDpk;T 2 C

WSD
pk;M CWSDpk;T 2 C

WSD
pk;M CWSDpk;T 2 C

WSD
pk;M CWSDpk;T 2 C

WSD
pk;M

lognormal

(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)

0.0748
0.1115
0.1355
0.1536
0.1883
0.2326

0.0274
0.0519
0.0706
0.0790
0.1019
0.1293

0.0422
0.0569
0.0727
0.0771
0.0991
0.1289

0.0188
0.0286
0.0437
0.0390
0.0546
0.0718

0.0215
0.0309
0.0372
0.0426
0.0555
0.0691

0.0100
0.0166
0.0224
0.0224
0.0320
0.0386

0.0272
0.0414
0.0541
0.0592
0.0754
0.0988

0.0173
0.0263
0.0349
0.0370
0.0467
0.0606

0.0138
0.0183
0.0218
0.0254
0.0316
0.0412

0.0097
0.0138
0.0184
0.0180
0.0229
0.0285

0.0067
0.0084
0.0094
0.0117
0.0148
0.0184

0.0051
0.0071
0.0095
0.0090
0.0118
0.0139

Weibull

(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)

0.0756
0.1068
0.1346
0.1530
0.1941
0.2481

0.0287
0.0502
0.0741
0.0748
0.1000
0.1292

0.0413
0.0511
0.0638
0.0767
0.1012
0.1270

0.0178
0.0254
0.0409
0.0374
0.0552
0.0672

0.0197
0.0270
0.0322
0.0407
0.0522
0.0638

0.0085
0.0143
0.0220
0.0212
0.0293
0.0329

0.0242
0.0375
0.0547
0.0548
0.0768
0.0981

0.0151
0.0234
0.0333
0.0325
0.0435
0.0543

0.0117
0.0149
0.0183
0.0219
0.0283
0.0376

0.0082
0.0114
0.0163
0.0150
0.0197
0.0247

0.0052
0.0066
0.0074
0.0094
0.0119
0.0150

0.0040
0.0057
0.0080
0.0070
0.0094
0.0110

gamma

(1, 1)
(1, 2)
(1, 3)
(2, 2)
(2, 3)
(3, 3)

0.0651
*
*

0.1261
*

0.1972

0.0266
*
*

0.0758
*

0.1291

0.0337
*
*

0.0641
*

0.0992

0.0149
*
*

0.0390
*

0.0667

0.0187
*
*

0.0294
*

0.0524

0.0098
*
*

0.0169
*

0.0344

0.0275
*
*

0.0548
*

0.0881

0.0180
*
*

0.0367
*

0.0558

0.0134
*
*

0.0227
*

0.0346

0.0096
*
*

0.0164
*

0.0244

0.0064
*
*

0.0104
*

0.0150

0.0049
*
*

0.0080
*

0.0112

ii) For a given skewness, both relative bias and MSE 
decrease as n  increases, and for given n , they 
increase as skewness becomes large.

iii) Both relative bias and MSE of Ĉ WSDpk;M  are smaller 
than those of Ĉ WSDpk;T 2 .

6.  Concluding Rem arks

This paper proposed two simple methods of 
constructing multivariate process capability indices for 
an arbitrary skewed population. These methods use 
T 2  statistic and modified process region to evaluate 
the capability of multivariate processes, and the 
multivariate weighted standard deviation method is 
used to reflect the skewness. This method adjusts the 
variance-covariance matrix in accordance to the 
degree of skewness of the underlying distribution. 
Numerical analyses indicate that the proposed WSD 
PCIs are close to the matched PCI for skewed 
populations, and this shows that the WSD PCIs can 
describe the process capability of a skewed population 
adequately.
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