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This paper proposes multivariate process capability indices (PCls) for skewed populations using 72 and
modified process region approaches. The proposed methods are based on the multivariate version of a weighted
standard deviation method which adjusts the variance-covariance matrix of quality characteristics and
approximates the probability density function using several multivariate normal distributions with the adjusted
variance-covariance matrix. Performance of the proposed PCIs is investigated using Monte Carlo simulation,
and finite sample properties of the estimators are studied by means of relative bias and mean square error.
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1. Introduction

Process capability analysis is an important and integral
part of the statistical process control activities for the
continuous improvement of quality and productivity.
The capability of a process is frequently measured by a
process capability index (PCI) which is designed to
provide a common and easily understood language for
quantifying its performance with a single-number
summary, and is a dimensionless function of process
parameters and specifications. C, and C,, are widely
used PCls based on univariate quality measurements.
However, capability analyses involving more than one
quality characteristics are sometimes of interest, and

multivariate statistical techniques can be used to analyze
several quality characteristics simultaneously.

A difficulty of defining multivariate PCIs is that
there is no consensus on the methodology for
assessing capability, which arises since the multivariate
relationship among the quality characteristics may or
may not be reflected in the engineering specifications.
In general, the upper specification limit ( /SL ) and
the lower specification limit ( £.S7, ) may be given for
each quality characteristic and these specification
ranges, taken together, form a rectangle or hypercube.
A multivariate PCI should compare the shapes,
locations, sizes, and orientations arising from the
statistical distribution with those from the engineering
specifications, which can lead to very different defini-
tions of capability in the multivariate domain.
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Several multivariate PCIs have been proposed.
Hubele et al. (1991) proposed a multivariate capability
vector which consists of three components, a ratio of
area or volumes, a relative location of the process and
specification centers, and a relative location of
maximum and minimum of the probability contour
and the specification limits. Taam et al. (1993)
proposed MC,,, which is the ratio of specification

region to a scaled 99.73 percent process region. Karl et
al. (1994) considered geometric dimensioning and
tolerancing which is a set of standards to describe the
physical features and their specified tolerances. Wang
and Chen (1998-99) suggested to use principal
components analysis. For more detailed reviews, see
Kotz and Lovelace (1998) and Wang ef al. (2000).

These methods, however, are confined to the case of
multivariate normal populations. In practice, the nor-
mality assumption is usually difficult to justify and is
often not appropriate. For example, the measurements
from chemical processes, filling processes, and semi-
conductor processes are often skewed. Recently,
Polansky (2001) proposed a nonparametric approach
based on a kernel estimate of an integral of a multi-
variate density. This procedure can do without the nor-
mality assumption, but may be somewhat complicated
for practitioners and may need a large amount of data
to perform well. Therefore, it is necessary to develop a
multivariate PCI for skewed populations which is
simple and performs reasonably well even with a small
data set.

This paper proposes methods of constructing simple
multivariate PCls for skewed populations based on the
multivariate version of a 'weighted standard deviation
(WSD) method of Chang and Bai (2002). This method
adjusts the variance-covariance matrix in accordance
to the degree of skewness of the distribution by using
different factors in computing the deviations above
and below the process mean and approximates the
probability density function (PDF) using several multi-
variate normal distributions with adjusted variance-
covariance matrix.

This paper is organized as follows: Section 2 reviews
the WSD method. Section 3 proposes two multivariate
WSD PCIs using 72 and modified process region
(Hubele et al. (1991)) approaches. The 7% approach
uses Hotelling's 72 statistic to reduce the dimension
of quality characteristics, and the process region
approach defines the PCI as the ratio of the volume of
engineering tolerance region to the volume of modi-
fied process region. The performance of the proposed
PCls is investigated in Section 4, and the finite sample
properties are studied in Section 5.

2. Weighted Standard Deviation(WSD)
Method

Chang and Bai (2001) and Chang et al. (2002) propos-
ed a WSD method to construct univariate control
charts and PCIs for skewed populations, respectively.
The WSD method is based on the idea that standard
deviation ¢, can be divided into upper and lower

deviations, ¢} and }’, which represent the degree of

the dispersions of the upper and lower sides from
mean ., respectively. WSDs s} and 4} are
obtained as ¢}= Py oy and ¢}=(1— Py) oy, Where
Py=Pr{X<puy}. An asymmetric PDF can be
approximated with two normal PDFs with the same
mean ,, but different standard deviations 24}, and
20V . Details can be found in Chang and Bai (2001).

Chang and Bai (2002) suggested a multivariate
WSD method and constructed a WSD 72 control
chart for skewed populations. The multivariate WSD
method adjusts the variance-covariance matrix with
WSDs of each quality characteristic. However, we
should not tamper with the correlation matrix since it
represents the dependent structure of quality
characteristics and a multivariate control chart must
reflect this dependency. If the variance-covariance
matrix is adjusted and the correlation matrix is
maintained, the scale of the conventional control
region is adjusted in accordance with skewness but the
direction is maintained.

<Figure 1> depicts the iso-PDF contours of the
original distribution, bivariate normal distribution, and
approximated distribution by the WSD method with
two quality characteristics, X and y. For simplicity,
the correlation of X and Yy is set to zero. <Figure
1(a)> describes the iso-PDF contours of the original
bivariate distribution, which show that the distribution
of (X,v) is skewed. <Figure 1(b)> shows that the
iso-PDF contour of the bivariate normal distribution is
very different from that of original distribution and the
rate of incorrect decisions will be large if the standard
method based on the normality assumption is used.
<Figure 1(c)> represents the concept of a multivariate
version of the WSD method. Similarly to the
univariate case, the original bivariate PDF can be
approximated with four segments each from four
bivariate normal PDFs which are obtained with the
combination of normal PDFs derived from marginal
PDFs of x and y. <Figure 1(c)> shows that the
is0-PDF contour of the original skewed distribution is
approximated with four parts each from the iso-PDF
contour of the derived bivariate normal distributions,
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@D, @, @), and @. It is similar to the iso-PDF contour
of the original PDF, and we can see that the WSD
method can effectively approximate the PDF of a
bivariate skewed distribution.

marginal PDF
| — X

marginal PDF
of ¥

(a) iso-PDF contours of skewed distribution

incorrect decision

iso-PDF contour of bivariate normal distribution

(b) is0-PDF contour of normal distribution

approximated iso-PDF contour

(c) iso-PDF contour approximated with WSD method

MVN(4, 2): multivariate normal distribution with
mean vector 4 and variance-covariance
matrix X

Figure 1. Iso-PDF contours and concept of
multivariate WSD Method.

Assume that ,-variate random vector X = (X, -

>

X )T is distributed with mean vector g = (g, -+, )7
and variance-covariance matrix
021 :012{71(72 o P1010,
J= 022 IOZVO:Z oy R (1)
7

where ‘7 denotes the transpose of a vector or
matrix, ¢, is the standard deviation of X, and o is

the correlation coefficient of X, and X;. For the

approximation such as <Figure 1(c)>, the variance-
covariance matrix should be adjusted as follows:

(6)? opotoy -+ poio)
SV= WX W= (G;VZ Pzﬂ?é%zv s (2)
()’
where
W= diag{ W, -, W, } ,
. 2P]', lf X/'>/J]', 3
v {2(1—P]-), otherwise , 3

o= W0, and P)=Pr{X;<p}.If X, is greater
than 4, the PDF related to X, is modified by
adjusting the ;th row and column of the variance-
covariance matrix using upper deviation 2P in

place of ;. Otherwise, the ;th row and column of the

variance-covariance matrix is adjusted using lower
deviation 2(1— P, ¢, Note that correlation matrix
p={p;} does not change after the variance-covariance
matrix is adjusted. This WSD method approximates
the original PDF with segments from 2* multivariate
normal distributions. <Figure 1(c)> is obtained with
four bivariate normal distributions with the same mean
vector g = (uy, 1y) " but different variance-covariance
matrices as follows:

{2(1—Py UX}Z

21:[ PXY'Z(l_PX)UX‘ZPYUY] ,
oxy* 2(1—Px)ox - 2Pyoy

{2PY6Y}2

{2Pxox} 2

22:[ PXY'ZPXUX‘ZPYUY] s
oxy* 2Px0x * 2Pyoy

{ZPYUY}Z

{2(1— Pyox)?

oxy* 2(1—Px)ox - 2(1— Py)oy ,
oxy* 2(1—Px)ox - 2(1—Py)oy

5= .
’ [ (2(1= Pyoy)?

{ZPXGX}Z

24:
oxy* 2Pxox - 2(1— Py)oy

oxy* 2Px0x 2(1fPY)GY] .
{2(1_PY)0Y}Z

Since the WSD method approximates the PDF of the
original distribution using normal distributions, the
standard statistical methods based on the normality
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assumption can be used with the approximated distri-
bution.

3. Multivariate PCIs Based on the WSD
Method

3.1 7% Approach

We now propose multivariate 72 WSD PClIs. The
T? statistic is often used in multivariate control
charts. The univariate C o is defined as the ratio of the
distance of the specification limits from the process
mean to the actual process spread 3¢, :

30y 30x
USL, LSL, }
3 73 ’

Cpk: mln{

4)

= min{

where (JSL, and 7SI, are the standardized dis-

tances from the mean to the upper and lower specifi-
cation limits, respectively, and the number 3 means the
99.865th percentile of the standard normal distribution

which is the same as V x2 ,.-(1) . Therefore, formula
(4) can be extended to the multivariate case as follows:
Lbp 'L, J

[
x%.(]OZ?(V) T X?].(]OZ’](V)

— . L 21 \/ L T2 9" ] 5
mln{\/ LoV (v |7 )

where [ is the coordinates of edge ; among 2
edges of the hypercube made by standardized
specification limits USL , =(USL,— 1)/ 0 and
LSL ;= (LSLy—pp)/ 0> k=1,2,--,v. The order of
edges is meaningless, but we assume that
L1=(USLZI,---,USLZU)T and [ 9»=(LSLy,",
LSLZV)T. For example, if p=92, L,=(USLy,
USL,)" and L ,=(LSL,,LSL,)", and L,=
(USL,,LSL,)" and L =(LSL,,USL,)" or
L,=(LSL,,USL,)" and L,= (USL,,LSL,)".
If all the correlation coefficients are positive, only I,

C y, = min

and [ , can be considered since they have the

shortest distances from the mean. <Figure 2>
describes the 7?2 approach for a bivariate distribution
with a positive correlation, and shows that ¢ " T 1S

the ratio the standardized specification lengths 1 .|
and I ., to the process dispersion % ,,,(2) -

——
- .
(UsL,,UsL,)
P oL,
process region _ g ,17(2)

A
L

/ 0
(LSL,,LSL,) nlspecificati(vl1 region/

.......

> e,

| PR process
:>i,. specification length dispprsion

Figure 2. Concept of 72 approach.

When the distribution is skewed, the WSD method
can be applied, so that formula (5) can be extended to

WSD . LVo 'LV LWZZ‘pﬂL "
C'y 2= min
' 2.0 (¥) 25 0021 (¥)

_ { \/ L% J L%,
= mln . ---’ E
X%J.0027(V) Xé.oom(y)

where the £th component of L 'is USL ,»=(USL,
—uplof ot LSL = (LSL,— pp)/ofs k=1,2,+, v

], ©)

3.2 Modified Process Region Approach

Hubele et al. (1991) proposed a 'modified process
region approach' which defines a multivariate PCI as
the ratio of the volume of engineering tolerance region
to the volume of modified process region. < Figure 3 >
illustrates the concept of the method. The modified
process region can be obtained by drawing the
smallest rectangle around the elliptical probability
contour. The edges of the rectangle are defined as the
upper and lower process limits, {/PL, and LPL;,
i=1,,v, determined by solving the system of
equations of first derivatives, with respect to X, of

the quadratic form

(X— )" U X—p) =2 om(v)-

The solutions to the equation provide the upper and
lower limits as follows:

Lrn(V) - det( Z7Y
UPLZ':/-‘i—’_\/ — ; )
d@f(z 1) (7)
_ Bon (V) - de( 27
LPL;= p; \/ a’et(z_l) i

where def( - ) is the determinant of a matrix and ¥,
is the matrix obtained from X by deleting row ; and
column ;. The approach defines the multivariate PCI
Cou @S
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USL,— LSL; )] “{ ®)

Cou= [ Hl( UPL,— LPL,

If the process mean and specification midpoint are
incorporated in the PCI and the specification limits are

standardized, C ey CAN be defined as

v (USL, LSL,\1"*
Coem= Z];[lmln{ UPL, ' LPL, ]] , 9
where
| W) - de(p )
UPL, = \/ e ,

(10)

Lo (V) - det( oY)
det(p ")

LPL, = —J =—UPL,.

\

process region

specification
region

\

modified process region

Figure 3. concept of modified process region
approach.

When the distribution is skewed, the WSD method
can be applied. USLV; and LSLVZI replace [USL Z
and 7SI, in formula (10), respectively, and hence

WSD
CJeny 1s defined as

v (USLY
L min| L,

WSD __
CP/@,M -

LSL% 1"
LPLZZ(}] .

Table 1. Data for the example

3.3 Estimation of Parameters

To use PCIs in practice, the parameters must be
estimated. If a random sample of size ; is obtained,

p and ¥ can be estimated by the sample mean
and the sample variance-covariance matrix

__ 1 3 Ty T3\ T
S=7"7 ;(Xi X(X,—X)",

respectively. The correlation coefficient of jth and
kth random variables o, can be estimated by

~ .

p_zgu;
VS NSK

where S, is the (;, £)th element of §. P, can be
estimated by the number of observations less than or
equal to the sample mean of jth quality characteristic
X ;as

/P]': ;]; z;[(ijiXt]) )
where [(x)=1 if x>( or J(x)=( otherwise.

3.4 An Illustrative Example

We illustrate the use of the proposed WSD PCls
with the bivariate process data in Sultan (1986)
dealing with 25 observations of the Brinell hardness
(X,) and the tensile strength (X,) of a process.
These data were also used by Chan et al. (1988), Chen
(1994), and Wang and Chen (1998-99). <Table 1>
presents the data, and <Figure 4> depicts the
histograms of X, and X, and shows that the
marginal distributions of X, and X, are slightly
skewed to the left. The specification limits for X, and
X, were set at (112.7, 2451.3) and (32.7, 73.3),
respectively.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
Xi 143 200 160 181 148 178 162 215 161 141 175 187 187
Xi 343 57.0 475 534 478 51,5 459  59.1 484 473 57.3 58.5 58.2

i 14 15 16 17 18 19 20 21 22 23 24 25

Xi 186 172 182 177 204 178
Xn 570 494 572 506 551 50.9

196 160 183 179 194 181
579 455 539 512 575 556
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10 10

4 4
2 2 W
: % ol ¥

T T T T T T T T T T 1 A,
140 160 180 200 220 30 35 40 45 50 55 60 65

Figure 4. Histograms of data in <table 1>.

From the data, X,=177.2, X,=52.32, o,=
18.38, 0,=5.80, 0,=0.80, P,=0.40, and
P,=0.48 We can obtain [.SL., = (LSL,— X,)/ 5, =
(112.7—177.2)/18.38=—3.51 » USL, =3.49,LSL,
——3.38, USL,=3.62, LSL",=LSL,/2(1—P))
=—2.93, USL', =4.36, LSL" =—3.25, USL",
=3.77 . Also,

Ly, =Lip 'L ,=[-3.51 —3.38]
[ 1 0.8][—3.51
0.8 1]Jl-3.38
Ly,=Llo 'L,=[3.49 3.62]

Los 1[5

=13.57,

—14.08,
L% =L¥p 'L =[-2.93 —3.25]
[ 1 0.8][—2.93
0.8 11l-3.2

L% =L} p 'L,=[4.36 3.77]

= ].0.87 5

1 0.87[4.367_
[0.8 1][3.77 19.23
K001(2) - det(p7 )
UPLZ:J 00027a’et(p_1)

/- 11.83-2.18 _
= 2.78 =3.4

and LPL,=—UPL,=—3.44 for j=1,2. Then the
estimated PCls are:

The 72 approach —

- L - L -
per i { Xé.oom(z) Xé.oom(z)
_ 13.57 14.08
_mm{ 11.83 ° 11.83}

=min{1.07, 1.09}=1.07

~ L, L,
CsD i {\/ el \/ T4 }
PeT i X%J.oom(z) X%.oom(z)
- 10.87 19.23
- mmN 11.83 ° ¢ 11.83]
=min{0.96, 1.27}=0.96

The modified process region approach —

~ 2 (USL, LSL, 1"
Crr = [ lemm{ UPL, * LPL, ”

=[min{5-55 . =501 )

min { £, =54 }]1/2

=[1.01-0.981"2=0.99

ANWSD __
Cbk,M_

» . (USL% LSL" 1"
L min\ Tpr, > IPL,
. [4.36 —2.93) .
_[mm{ 3.44 —3.44}

min {41 =571 }]W

=[0.85-0.94]">=10.89

T ‘ﬁ’:’ﬂ and E‘;‘Eﬁ are smaller than C o and
C . u» Tespectively, and this shows that the process is
and C

less satisfactory than ¢ indicate.

T e M

4. Performance of the WSD PCls

The performances of the proposed PCls are studied
when the distribution is multivariate normal,
multivariate lognormal, Hougaard's bivariate Weibull,
or Cheriyan and Ramabhadran's bivariate gamma. See
Kotz et al. (2000) for detailed discussions on theses
distributions. For all cases, it is assumed that
USL,=3 and [SL,=-—3, and the distribution is
shifted and scaled to produce the same value of 4=
and g,=1, i=1,,v.

<Tables 2> gives C ez oy

size j increases when the distribution is bivariate
normal and the correlation coefficient , is nonnegative.
It also gives nonconforming proportion per million
(NPM) and MC,. MC, is calculated by —(1/3)0 !
((NPM/2)=x10~°%) since NPMx10 *=2&(—3C,)

and C as the sample
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under the normality assumption, where @( -) is the
cumulative standard normal distribution function. If
the value of PCI is close to that of /¢ , O MC,,, the

underestimates it when the correlation is high,
and C,,, underestimates it for all ranges of

correlation. For highly correlated normal popu-

PCI can be considered to describe the process capa- lations, C ,, . performs better than C,,,, and
bility very well in terms of nonconforming proportion. vise versa.
The Table shows that: ii) If the parameters are unknown ( % =50, 100,200 ),
i) If the parameters are known (n=oco), MC, the biases of ¢ , . and C,,,, are negative.
slightly increases as the correlation coefficient o & '
increases but C T decreases and C po does not <Table 3> and <Table 4> give C e Clﬁ’:’ﬁ,

change. Also, C

i 7¢ overestimates the process ¢ s and  CJeb for bivariate lognormal, Weibull,

capability when the correlation is low and and gamma distributions with correlation p=(.3 or

Table 2. NPM, MC,, C T and C et for bivariate normal distributions

n=>50 n=100 n=200 n= o0

MC
e NPM ! C Pk T" C vk M C Pk T"

Cpk,M C Pk T2 szk,M C Pl T2 Cbk,M

0.0 5,392 0.928 1.233 0.850 1.227
0.1 5,389 0.928 1.174 0.850 1.168
0.2 5,377 0.928 1.123 0.850 1.118
0.3 5,352 0.928 1.077 0.851 1.073
0.4 5,308 0.929 1.036 0.850 1.032
0.5 5,236 0.931 1.000 0.851 0.998
0.6 5,120 0.933 0.969 0.852 0.964
0.7 4,940 0.937 0.938 0.851 0.935
0.8 4,655 0.943 0911 0.852 0.909
0.9 4,179 0.955 0.885 0.851 0.882

0.855 1.226 0.859 1.234 0.872
0.854 1.168 0.859 1.176 0.872
0.855 1.118 0.859 1.126 0.872
0.854 1.073 0.859 1.082 0.872
0.854 1.033 0.859 1.043 0.872
0.855 0.997 0.859 1.007 0.872
0.854 0.965 0.859 0.975 0.872
0.855 0.936 0.859 0.946 0.872
0.856 0.909 0.859 0919 0.872
0.854 0.885 0.859 0.895 0.872

n = oo : parameters-known case

Table3. NPM, MC,, C o T c"b,. C et and C"P for bivariate distributions (parameters known)

e T M

(@ 0=0.3
dist. ( 71> ?’2) NPM Mmc, C Pl T CVZZDT? Coen C Z%
(1,1) 20,295 0.774 1.082 0.962 0.872 0.776
(1,2) 25,883 0.743 1.082 0.927 0.872 0.746
loenormal (1,3) 27,700 0.734 1.082 0.907 0.872 0.727
en 2,2) 31,332 0.718 1.082 0.889 0.872 0.717
2,3) 33,095 0.710 1.082 0.868 0.872 0.699
(3,3) 34,841 0.703 1.082 0.845 0.872 0.682
(1,1) 19,344 0.780 1.082 0.948 0.872 0.764
(1,2) 27,495 0.735 1.082 0.904 0.872 0.726
Weibull (1,3) 30,221 0.722 1.082 0.880 0.872 0.702
(2,2) 35,243 0.702 1.082 0.856 0.872 0.690
(2,3) 37,948 0.692 1.082 0.829 0.872 0.667
(3,3) 40,513 0.683 1.082 0.801 0.872 0.645
(1,1 19,602 0.778 1.082 0.955 0.872 0.770
(1,2) 27,168 0.736 1.082 0.908 0.872 0.729
amma (1,3) 31,228 0.718 1.082 0.876 0.872 0.696
g (2,2) 33,245 0.710 1.082 0.856 0.872 0.690
(2,3) 37,270 0.694 1.082 0.820 0.872 0.659
(3,3) 39,731 0.686 1.082 0.781 0.872 0.630
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(b) 0=0.8

dist. (71, 7) NPM McC, C oz Chur Coem Chiit

(1,1) 16,843 0.797 0.919 0.817 0.872 0.776
(1,2) 21,323 0.767 0.919 0.792 0.872 0.746
(1,3) 22,476 0.761 0.919 0.782 0.872 0.727
2,2) 25,531 0.744 0.919 0.755 0.872 0.717
2,3) 26,731 0.738 0.919 0.739 0.872 0.699
3,3) 28,092 0.732 0.919 0.719 0.872 0.682

(1,1 16,961 0.796 0.919 0.805 0.872 0.764
(1,2) 23,458 0.755 0.919 0.775 0.872 0.726
Weibull (1,3) 25,271 0.746 0.919 0.766 0.872 0.702
2,2) 29,334 0.726 0.919 0.727 0.872 0.690
2,3) 30,989 0.719 0.919 0.707 0.872 0.667
3,3) 32,840 0.711 0.919 0.680 0.872 0.645

(1,1 15,352 0.808 0.919 0.811 0.872 0.770
(1,2) * * * * * *
(1,3) * * * * * %
2,2) 24,558 0.749 0.919 0.727 0.872 0.690
(2.,3) * % % * * *
(3,3) 28,625 0.730 0.919 0.664 0.872 0.630

lognormal

gamma

*: not applicable

0=0.8 and various skewnesses ( y,, y,). NPM and as skewness increases and cﬁDT and C}P%
McC, are also given in <Table 3>. The tables show reflect such a phenomenon, i.e., they decrease as
that: skewness becomes large Whereas C . and

i) When the parameters are known, /C, decreases C . Temain constant; <Table 3>

Table4. C e T c™ g T, Coen and ¢ e D for bivariate distributions(parameters unknown)

(@ p=0.3

n=>50 n=100 n=200

WSD
Cp/a?“ Ckae Cpk,M CpkM Cp/e,ﬂ Cpk,Te Cpk,M CpkM Cpk,TZ CkaZ Cpk,M Cpk,M

(1,I) | 1.095 1.026 0.860 0.794 | 1.082 0.995 0.860 0.788 | 1.077 0.980 0.861 0.783
(1,2) | 1.111 1.011 0.869 0.778 | 1.093 0.973 0.867 0.766 | 1.083 0.950 0.865 0.756
(1,3) | 1.143 1.019 0.888 0.777 | 1.111 0.968 0.876 0.756 | 1.091 0.936 0.868 0.741
(22) | 1.313 0998 0.882 0.765 | 1.106 0.948 0.874 0.744 | 1.090 0.920 0.868 0.731
(2,3) | 1.160 1.001 0.898 0.762 | 1.119 0939 0.881 0.733 | 1.097 0.904 0.873 0.716
3,3) | 1.187 1.007 0914 0.758 | 1.138 0.935 0.892 0.725 | 1.108 0.892 0.878 0.704

(1,1) | 1.085 1.002 0.856 0.782 | 1.076 0.975 0.857 0.775 | 1.074 0.960 0.859 0.769
(1,2) | 1.108 0.982 0.870 0.760 | 1.089 0.942 0.863 0.743 | 1.080 0.922 0.863 0.735
(1,3) | 1.141 0984 0.886 0.751 | 1.102 0.927 0.871 0.725 | 1.090 0.905 0.869 0.716
(2,2) | 1.127 0953 0.880 0.735 | 1.101 0.906 0.871 0.713 | 1.086 0.880 0.866 0.701
(2,3) | 1.158 0953 0.897 0.726 | 1.118 0.893 0.880 0.698 | 1.096 0.862 0.872 0.683
(3,3) | 1.193 0958 0918 0.722 | 1.135 0.881 0.891 0.685 | 1.105 0.841 0.877 0.665

1,y | 1.091 1.103 0.858 0.788 | 1.079 0.984 0.858 0.780 | 1.076 0.970 0.860 0.776
(1,2) | 1.115 0.992 0.869 0.762 | 1.092 0.950 0.864 0.747 | 1.082 0.928 0.863 0.737
(1,3) | 1.152 0.987 0.887 0.744 | 1.111 0.930 0.874 0.722 | 1.094 0.905 0.869 0.710
(2,2) | 1.135 0960 0.881 0.737 | 1.106 0909 0.872 0.714 | 1.089 0.883 0.867 0.702
2,3) | 1.174 0954 0901 0.722 | 1.119 0.882 0.877 0.687 | 1.098 0.854 0.872 0.675
(3,3) | 1.211 0943 0.920 0.705 | 1.141 0.861 0.890 0.667 | 1.109 0.822 0.877 0.649

dist. (71, 72)

lognormal

Weibull

gamma
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(b) 0=0.8
, N n=2>50 n=100 n=200

dist. (71 » 72) WSD WSD WSD WSD WSD WSD
Cpk,?“ Cp/zT2 Cpk,M CblaM cp/aﬁ Cpk,Tz CplaM Cpk,M Cﬁk,TZ CplzTZ Cpk,M CizlaM
(1,1) 10928 0.879 0.862 0.797 | 0.916 0.850 0.860 0.788 | 0.913 0.834 0.861 0.783
(1,2) | 0950 0.878 0.874 0.784 | 0.932 0.840 0.869 0.769 | 0.921 0.815 0.865 0.757
loenormal (1,3) | 0.983 0.888 0.889 0.780 | 0.948 0.836 0.875 0.756 | 0.932 0.811 0.871 0.744
en (2,2) | 0968 0.870 0.887 0.772 | 0.941 0.816 0.875 0.746 | 0.928 0.788 0.870 0.733
(2,3) | 0997 0.877 0902 0.769 | 0.959 0.814 0.886 0.738 | 0.938 0.780 0.877 0.721
(3,3) | 1.026 0.888 0.923 0.771 | 0.973 0.809 0.896 0.731 | 0.948 0.769 0.883 0.709
(1,1) | 0.923 0.866 0.858 0.785 | 0914 0.836 0.858 0.776 | 0.912 0.821 0.861 0.770
(1,2) | 0947 0.857 0.870 0.761 | 0.928 0.817 0.865 0.746 | 0.918 0.794 0.863 0.735
Weibull (1,3) | 0995 0.870 0.891 0.757 | 0.951 0.815 0.876 0.732 | 0931 0.791 0.870 0.717
(2,2) | 0968 0.839 0.883 0.740 | 0.939 0.783 0.872 0.716 | 0.925 0.755 0.867 0.702
2,3) 1.007 0.848 0.903 0.736 | 0.956 0.774 0.881 0.700 | 0.937 0.744 0875 0.686
(3,3) | 1.032 0.847 0922 0.728 | 0.975 0.766 0.894 0.688 | 0.944 0.724 0.879 0.667
(1,1) 10924 0.868 0.861 0.793 | 0.915 0.841 0.859 0.783 | 0913 0.827 0.861 0.778

(1’2) * * % * * % * % % * % *

(1’3) * * % * * % * % % * % *
gaMMa | o0y 10960 0.820 0.886 0.742 | 0931 0771 0.871 0.715 | 0.921 0.750 0.867 0.702

(2.,3) * * * * * * * * * * * *
(3,3) | 1.009 0.791 0.922 0.709 | 0.959 0.727 0.891 0.669 | 0.938 0.698 0.879 0.651

ii) When the parameters are unknown, C T and in most cases, and vise versa.
Cey Increase as. skewness become§ large, <Table 5> and <Table 6> present PCIs for two
whereas C"7. and C)P}; decrease in most  4.yarjate lognormal distributions, where case 1 uses

cases. All PCIs are overestimated especially
when the sample size is small; < Table 4>

ii) ¢}y is closer to pC, in <Table 3(a)>, and
C" is closer to J/C, in <Table 3(b)> except
for (y,,7,)=1(1,2) . Also, <Table 4> and addi-
tional extensive study we have conducted indi-
cate that CVZ:;;DTZ is closer to mC ) for highly
correlated populations as sample size becomes
large, and vise versa. This shows that the 772
approach is superior to the modified process
region approach for highly correlated populations

p, describing low positive correlations ( p,<0.5) and
case 2 uses p, containing high correlations ( p,>0.5)
as follows:

110.2 0.3 0.1]
pi=| 10204
1 0.3
1|
10.8 0.6 0.7]
0, 1 0.80.5
1 0.6
1|

TableS. NPM, MC,, C ,;, s C‘ﬁf)ﬁ’ Cyen and Cjey; for 4-variate lognormal distributions

(parameters known)

case (71, 72, 73.74) NPM MC, C e Ch Corem Chent
(1.0,0.5,1.0,0.5) 15,916 0.804 1.128 1.030 0.744 0.680

| (1.5,1.0,1.0,1.5) 24,016 0.752 1.128 0.980 0.744 0.647
(1.5,1.52.52.5) 27.417 0.735 1.128 0.933 0.744 0.614
(0.5,2.52.0,1.5) 22.865 0.759 1.128 0.973 0.744 0.633
(1.0,05,1.0,0.5) 13.352 0.825 0.865 0.810 0.744 0.680

5 (1.5,1.0,1.0,1.5) 19,631 0.778 0.865 0.754 0.744 0.647
(1.5,1.52.52.5) 22308 0.762 0.865 0.712 0.744 0.614
(0.5,2.52.0,1.5) 19,230 0.780 0.865 0.755 0.744 0.633
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The results are similar to the bivariate cases. Since
the WSD PClIs is designed to reflect the skewness, the
WSD PClIs decrease as skewness becomes large.

5. Finite Sample Properties

The relative biases and mean square errors (MSEs) of

ngeDr and C"® & D are investigated for small and

moderate sample sizes. 10,000 values of deviations
and squared deviations, each based on =150, 100,200

WSD
ew for 4

Table 6. C and C

kT Cka" Cpk,M

d Populations with Weighted Standard Deviations 123

random variates, are computed and averaged to obtain
the relative bias and MSE. For all cases, it is assumed
that USL,=3 and LSL,=—3 and the distribution is
shifted and scaled to produce the same value of 4=
and 5,=1, =1,2.

<Table 7> presents the relative biases and MSEs for
bivariate lognormal, Weibull, and gamma distributions
with p=().3 or p=(. 8 and shows that:

i) For all cases, C" pﬂa and chﬁ overestimate the

true value of C"". and C)7}.

-variate lognormal distributions (parameters unknown)

n=>50

n= 100 n=200

case| (71,7, 73.74) oD

kT

C ez Coent | Chint

Cp/e,ﬂ

CﬂleTz Cpk,M CpkM Cpk,T‘ Cp]z’]‘z Cpk:M Ci:kM

1.169
1.186
1.228
1.207

1.122
1.099
1.097
I.111

0.729
0.735
0.750
0.743

0.682
0.665
0.650
0.659

(1.0,0.5,1.0,0.5)
(1.5,1.0,1.0,1.5)
(1.5,1.52.5,2.5)
(0.5,2.5,2.0,1.5)

1.141
1.151
1.173
1.165

1.077
1.038
1.013
1.045

0.731
0.734
0.742
0.740

0.683
0.658
0.632
0.649

1.131
1.135
1.149
1.142

1.054
1.009
0.976
1.007

0.734
0.735
0.740
0.737

0.683
0.653
0.625
0.641

0.895
0.915
0.963
0.963

0.902
0.885
0.895
0.906

0.730
0.739
0.754
0.748

0.684
0.671
0.655
0.664

(1.0,0.5,1.0,0.5)
(1.5,1.0,1.0,1.5)
(1.5,1.5,2.5,2.5)
(0.5,2.5,2.0,1.5)

0.9
0.9

0.874
0.886

0.859
0.823
0.805
0.831

0.732
0.736
0.743
0.742

0.684
0.661
0.634
0.651

0.866
0.871
0.888
0.887

0.836
0.787
0.762
0.793

0.734
0.735
0.741
0.740

0.683
0.654
0.626
0.643

11
13

Table 7. Relative biases and MSEs of ¢ " o D and C

(@ p=

WSD for bivariate distributions

Pl M

0.3

relative bias

MSE

dist. (7, 7) n=>50 7n=100

n=

200 n=>50 n=100 n=200

C WSD

WSD
P ¢

WSD
P ¢

CﬁkM CﬁkM

bl T

C WSD

WSD
P ¢

WSD
P ¢

bl T

CﬁkM CﬁkM CﬁkM CﬁkM

0.0604
0.0953
0.1214
0.1295
0.1553
0.1938

0.0204
0.0459
0.0650
0.0704
0.0895
0.1162

0.0360
0.0470
0.0625
0.0663
0.0801
0.1024

0.0163
0.0238
0.0366
0.0381
0.0475
0.0611

(1, 1)
(1,2)
(1,3)
2.2
(2.3)
3.3)

lognormal

0.0172
0.0256
0.0334
0.0347
0.0448
0.0548

0.0085
0.0146
0.0207
0.0199
0.0268
0.0332

0.0306
0.0457
0.0587
0.0618
0.0755
0.0943

0.0122
0.0188
0.0255
0.0262
0.0327
0.0410

0.0154
0.0201
0.0246
0.0265
0.0311
0.0386

0.0068
0.0098
0.0130
0.0132
0.0157
0.0191

0.0072
0.0094
0.0114
0.0120
0.0146
0.0176

0.0035
0.0050
0.0068
0.0063
0.0080
0.0095

0.0558
0.0844
0.1124
0.1125
0.1563
0.1949

0.0227
0.0436
0.0679
0.0628
0.0906
0.1151

0.0278
0.0394
0.0577
0.0573
0.0775
0.0994

0.0134
0.0214
0.0375
0.0326
0.0464
0.0581

(1, 1)
(1,2)
(1,3)
2,2)
(2,3)
G.3)

Weibull

0.039
0.050

0.0136
0.0222
0.0294
0.0286

0.0073
0.0131
0.0198
0.0164
0.0237
0.0296

0.0258
0.0375
0.0513
0.0496
0.0710
0.0895

0.0106
0.0165
0.0237
0.0218
0.0299
0.0372

0.0120
0.0152
0.0203
0.0208
0.0275
0.0346

0.0058
0.0079
0.0114
0.0106
0.0138
0.0164

0.0055
0.0071
0.0088
0.0091
0.0115
0.0146

0.0028
0.0040
0.0055
0.0049
0.0063
0.0078

8
1

0.0586
0.0943
0.1276
0.1232
0.1583
0.2000

0.0216
0.0469
0.0692
0.0673
0.0903
0.1161

0.0336
0.0463
0.0600
0.0596
0.0802
0.0997

0.0158
0.0251
0.0341
0.0330
0.0460
0.0579

(1, 1)
(1,2)
(1,3)
2.2)
(2,3)
G.3)

gamma 0.030

0.0166
0.0227
0.0294

0.0403
0.0525

0.0067
0.0091
0.0119
0.0116
0.0143
0.0172

0.0074
0.0094
0.0109
0.0119
0.0145
0.0179

0.0034
0.0046
0.0058
0.0055
0.0068
0.0081

0.0086
0.0127
0.0170
0.0172
0.0227
0.0315

0.0325
0.0478
0.0639
0.0627
0.0825
0.1026

0.0124
0.0186
0.0250
0.0250
0.0323
0.0393

0.0156
0.0202
0.0245
0.0258
0.0321
0.0400

5
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(b) o=

0.8

relative bias

MSE

dist. (71, 72) n

=50

n=100

n=

200

n=

50

n=100

n=200

ckaz

Chionn

ckaz

Chionn

ckaz

Chionn

ckaz

Chion

ckaz

Chion

ckaz

Chionn

0.0748
0.1115
0.1355
0.1536
0.1883
0.2326

(1, 1)
(1,2)
(1,3)
2.2)
2.3)
3.3)

lognormal

0.0274
0.0519
0.0706
0.0790
0.1019
0.1293

0.0422
0.0569
0.0727
0.0771
0.0991
0.1289

0.0188
0.0286
0.0437
0.0390
0.0546
0.0718

0.0215
0.0309
0.0372
0.0426
0.0555
0.0691

0.0100
0.0166
0.0224
0.0224
0.0320
0.0386

0.0272
0.0414
0.0541
0.0592
0.0754
0.0988

0.0173
0.0263
0.0349
0.0370
0.0467
0.0606

0.0138
0.0183
0.0218
0.0254
0.0316
0.0412

0.0097
0.0138
0.0184
0.0180
0.0229
0.0285

0.0067
0.0084
0.0094
0.0117
0.0148
0.0184

0.0051
0.0071
0.0095
0.0090
0.0118
0.0139

0.0756
0.1068
0.1346
0.1530
0.1941
(3,3) |0.2481

(1, 1)
(1,2)
(1,3)
2.2)
2.3)

Weibull

0.0287
0.0502
0.0741
0.0748
0.1000
0.1292

0.0413
0.0511
0.0638
0.0767
0.1012
0.1270

0.0178
0.0254
0.0409
0.0374
0.0552
0.0672

0.0197
0.0270
0.0322
0.0407
0.0522
0.0638

0.0085
0.0143
0.0220
0.0212
0.0293
0.0329

0.0242
0.0375
0.0547
0.0548
0.0768
0.0981

0.0151
0.0234
0.0333
0.0325
0.0435
0.0543

0.0117
0.0149
0.0183
0.0219
0.0283
0.0376

0.0082
0.0114
0.0163
0.0150
0.0197
0.0247

0.0052
0.0066
0.0074
0.0094
0.0119
0.0150

0.0040
0.0057
0.0080
0.0070
0.0094
0.0110

(1,1) |0.0651

0.0266

0.0337

0.0149

0.0187

0.0098

0.0275

0.0180

0.0134

0.0096

0.0064

0.0049

(1,2) * * * * *
(1,3) * * * * *
(2,2) |0.1261 0.0758|0.0641 0.0390
(2,3) * * * * *
(3,3) |0.1972 0.1291|0.0992 0.0667

gamma

0.0294

0.0524

* * * * * * *
* * * % * * *

0.0169 | 0.0548 0.0367|0.0227 0.0164|0.0104 0.0080

* * * * * * *

0.0344 |1 0.0881 0.0558 | 0.0346 0.0244|0.0150 0.0112

ii) For a given skewness, both relative bias and MSE
decrease as 5 increases, and for given 4, they
increase as skewness becomes large.

iii) Both relative bias and MSE of ¢ "*0 are smaller

bl M
WSD
than those of ¢ e

6. Concluding Remarks

This paper proposed two simple methods of
constructing multivariate process capability indices for
an arbitrary skewed population. These methods use
T? statistic and modified process region to evaluate
the capability of multivariate processes, and the
multivariate weighted standard deviation method is
used to reflect the skewness. This method adjusts the
variance-covariance matrix in accordance to the
degree of skewness of the underlying distribution.
Numerical analyses indicate that the proposed WSD
PCIs are close to the matched PCI for skewed
populations, and this shows that the WSD PCls can
describe the process capability of a skewed population
adequately.
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