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This paper describes interactive dynamic simulation 
schemes for articulated bodies in virtual environments, 
where user interaction is allowed through a haptic interface. 
We incorporated these schemes into our dynamic simulator 
I-GMS, which was developed in an object-oriented 
framework for simulating motions of free bodies and 
complex linkages, such as those needed for robotic systems 
or human body simulation. User interaction is achieved by 
performing push and pull operations with the PHANToM 
haptic device, which runs as an integrated part of I-GMS. 
We use both forward and inverse dynamics of articulated 
bodies for the haptic interaction by the push and pull 
operations, respectively. We demonstrate the user-
interaction capability of I-GMS through on-line editing of 
trajectories for 6-dof (degrees of freedom) articulated bodies. 
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I. INTRODUCTION 

A simulation environment contains multi-rigid-body systems, 
each of which consists of a number of passive bodies, called 
free bodies, that move in response to external forces or forces 
arising from contacts and a number of active bodies that are 
actuated. Dynamic simulation advances over time steps by 
successively predicting the accelerations (and contact forces of 
any rigid bodies that are in contact) of the multi-rigid-body 
systems in the environment. 

Dynamic motion simulation arises in many engineering 
application domains, such as virtual reality, graphics, robot 
motion simulators, and computer games. For example, 
interaction with the virtual environment by the user in real time 
is becoming increasingly important in computer games. This 
interaction is achieved not only through the user's textual input, 
but also by direct touch of an object in the virtual scene. The 
addition of force and touch (haptic feedback) to dynamic 
simulation increases the simulation realism when the virtual 
objects are manipulated by the user during a simulation. In 
particular, this sensory modality is highly desirable when the 
graphics are corrupted from partial occlusion of manipulated 
objects during simulation or when the environment is dark. 

Adding haptic interaction to the dynamic simulation has the 
effect of exerting user-applied external forces to the active bodies 
in the virtual scene to change their dynamic behavior. In other 
words, it changes the course of simulation trajectories by keeping 
track of changes in dynamics due to outside disturbances such as 
contact. This has many applications, such as teleoperation of 
robots for remote inspection and virtual training. 

In this work, we present two methods of realizing interactive 
dynamic simulation through haptic feedback: push and pull 
modes. We performed the interactive simulation in our test-bed 
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dynamic simulator I-GMS [1], which can simulate dynamic 
motions of multi-rigid-bodies in virtual environments. In 
particular, the user interaction is demonstrated by on-line 
editing and modification of trajectories of articulated bodies in 
applications, such as robot manipulators. 

This paper is organized as follows. In section II, we 
introduce related works. The dynamics simulation system that 
incorporates our interactive schemes is described in section III. 
The dynamic models we used for the haptic interaction are 
discussed in section IV, followed by simulation examples that 
demonstrate our interactive schemes in section V. Finally, we 
give concluding remarks in section VI. 

II. RELATED WORK 

Early work on haptic interaction focused on haptic rendering 
of graphical environments and used force feedback coupled 
with the visual display to realize surface shading, friction, and 
texture [2]-[4]. Some proposed dynamic simulators have haptic 
interaction capability. One study used an impulse-based 
simulation as a general purpose multi-body simulator for haptic 
display [5], and another investigated the haptic interaction for a 
point contact for rigid body dynamics [6]. Berkelman et al. [7] 
provided a tool-based haptic interaction where the user feels 
and interacts with the simulation environment through a rigid 
tool of a given shape rather than directly with the hand or 
fingers. One haptic interaction method used a virtual hand for 
grasping dynamic objects and physical modeling of plasticity 
[8]. All these studies dealt with haptic interaction for non-
linked free bodies. 

Mataric [9] used a control method for a haptic pull 
operation similar to ours for performing a continuous 
sequence of smooth movements: a physics-based humanoid 
torso dancing the Macarena. However, that method 
implemented conventional user interaction rather than 
haptics. 

Another scheme similar to our push operation used a 
simplified forward dynamics of multi-chained articulated 
figures, but it did not present any real-time simulation example 
that used haptic interaction [10]. Our work not only provides an 
interactive simulation scheme using a full forward dynamics 
but also provides a haptic push operation by using the inverse 
dynamics of multi-chained articulated bodies. 

Donald and Henle [11] offered a more sophisticated model 
that used haptics to browse and edit abstract representations of 
animation trajectories. This approach used a vector field 
method to allow the user to manipulate motion-captured data. 
It was innovative in that it tried to manipulate high degrees of 
freedom (dof) animation characters through a low dof control 
space by using the PHANToM haptic device. While it 

provided manipulation of animation characters, it was through 
unintuitive indirect touch rather than direct touch on the 
animation character’s body. 

III. SYSTEM OVERVIEW 

Our interactive simulation schemes were systematically 
incorporated into our dynamic simulator, called the I-GMS, to 
include the haptic interaction as an external disturbance into 
the dynamics of the articulated structures. In fact, the 
incorporation process itself self-verifies that our way of 
including the interactive schemes into the pre-developed 
dynamics is theoretically sound and correct. Thus, it is 
important to understand the underlying dynamics of our 
backbone simulator to understand subsequent development of 
haptic interaction. 

1. Object-Oriented Framework of the I-GMS 

The I-GMS is implemented in the C++ programming 
language and is comprised of object classes representing 
geometric entities in the virtual environment: Environment, 
MultiBody, Body, FixedBody, and FreeBody. It also contains 
auxiliary classes: Transformation, Orientation, DHparameters, 
Connection, etc. Each geometric class contains its own 
kinematic and dynamic functions as core member functions. 
Auxiliary classes support the geometric classes by 
characterizing the connections among the component bodies 
and determining their positions and orientations via appropriate 
kinematic propagations. 

Common functions such as kinematics and dynamics for 
different multi-rigid-body systems are handled internally 
through virtual functions. An application programmer needs to 
specify only high-level functions such as ComputeKinematics 
and ComputeDynamics in the driver routine to specify the 
motions of a multi-rigid-body. The underlying Body class 
propagates its basic properties to its derived classes (e.g., 
FreeBody and FixedBody). This is illustrated in Fig. 1. Other 
classes can be derived from each of these, for example, 
attFixedBody and attFreeBody, where att is a shorthand for 
‘attributed.’ For our simulation, we used RigidDynFixedBody 
and RigidDynFreeBody to indicate that all the bodies are used 
for rigid-body dynamic simulation. 

In the I-GMS, a geometric class MultiBody is instantiated to 
represent any articulated structure, such as a robot manipulator 
or human body model. Thus, it is easy to incorporate the haptic 
interaction into the dynamic simulation, since we only need to 
modify the dynamics that are implemented as a member 
function of the MultiBody class. A more detailed description of 
the design of the I-GMS can be found in [1]. 
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Extended I-GMS 

HumanBody MultiBody 

virtual ForwardKinematics() 
virtual InverseKinematics() 
virtual ForwardDynamics() 
virtual InverseDynamics() 

Class derivation Body 
virtual GetWorldTransform() 
virtual GetBackwardConnect()
virtual GetForwardConnect()
virtual ComputeDynamics() 

FreeBody FixedBody 

attFreeBody attFixedBody 

Virtual NewtonEulerDynamics() 

Basic I-GMS 

Fig. 1. Class hierarchy within the I-GMS. 

 

2. Interactive Simulation through Haptics Interaction 

We support interactive simulation through haptic interaction. 
Through real-time user interaction, we are able to modify an 
existing path or generate an arbitrary trajectory during 
simulation. Generating a trajectory can be a tedious off-line job 
if the code must be modified every time we need a modified 
(or new) trajectory for a robot manipulator to follow. With 
interactive simulation, we can adjust or create trajectories 
during the simulation. In particular, the user interaction is 
focused on the on-line editing and creation of trajectories for 
articulated manipulators. The PHANToM haptic device [12] 
achieves interactive simulation in two modes in our simulation: 
push and pull operations. 

A push operation, which occurs at the point of contact 
between the PHANToM and the virtual object, triggers the 
contact force at the contact point and is incorporated as an 
external disturbance into the forward dynamics (see (2) in 
section IV.2). In this way, a new acceleration is computed 
whenever haptic interaction occurs. This new acceleration 
determines the new starting state of the system from which 
trajectory generation is resumed (or integration is performed 
using the new acceleration) and continued until the occurrence 
of the next haptic interaction event. The change in the trajectory 
after the haptic touch occurs in real time. 

In a pull operation, the PHANToM is attached to an 
articulated object, and the user can drag it around the workspace. 
For example, the PHANToM can be attached to the end-
effector of an articulated structure in the workspace so that the 
joint motion can be followed dynamically as the user intends. 
Since we attach the PHANToM to the end-effector, the user is 
also able to feel the dragging force which corresponds to the 

dynamic motion of the robot. Since the operation occurs in 
Cartesian space, this operation allows a more intuitive 
interaction for the user. This is explained in detail in section IV. 
2. 

Since a user usually performs haptic interaction in a sporadic 
manner, computations of the new system state and the ensuing 
trajectory generation are repeated in an interleaved fashion 
during simulation. This situation is illustrated in Fig. 2. 
 

  
Initially planned trajectory without haptic interaction 

Starts of modified trajectories through user interactions 

Duration of haptic interaction

Time elapsed 

Fig. 2. Interactive simulation as a sequence of interleaved 
operations. 

 
This simple scheme of modifying a trajectory in real time 

can be incorporated into the usual simulation steps as follows: 

Steps for Interactive Simulation 

WHILE (not stopped) DO 
IF (there is a haptic input)  (push or pull) 

THEN 
Compute joint accelerations using forward or inverse dynamic equation; 

ELSE 
Compute joint trajectory to follow; 
Compute the joint torques using inverse dynamics; 
Compute joint accelerations using forward dynamics; 
Update system's state. 

IV. DYNAMIC MODELS 

Our objective is to deal with haptic interaction for articulated 
structures by considering this interaction as a change in the 
dynamic behavior of the underlying structures. We achieve this 
by incorporating the contact point as an external force into the 
exact dynamics of the articulated structures. Thus, it is crucial 
to describe the dynamics of the articulated structures in detail 
for further development of the haptic inclusion into the 
dynamic simulator. For our investigation, we describe the 
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dynamics supported in the I-GMS by motion equations for a 
generalized articulated structure, while explaining the inclusion 
of the haptic interaction as an external disturbance that changes 
the underlying dynamics. 

1. Multi-Branch Structure with a Floating Base 

An articulated structure with a multi-branch linkage and a 
floating base can be used to model very complex structures 
such as a human body model. To describe the dynamics, we 
extended the recursive Newton-Euler dynamics algorithm [13] 
(used for the fixed-base case). 

Here, the base is considered as a free-falling body in deriving 
the equations. Thus, we attached a moving frame to the base, 
which resulted in an additional 6-dof for representing its 
position and orientation. To consider the moveable base, we 
added the following equations to the outward iteration of the 
fixed-base case, so that the positional and angular acceleration 
of every link is propagated starting from the moving base link. 
(The notation was adopted from [13].) 

Outward iterations 
For base case, 
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Here, 
0Cv& , ,

0Cω  and 
0Cω& are the linear acceleration, angular 

velocity, and angular acceleration of the center of mass of the 
base body, respectively. 

For i from 1 to n – 1, 
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Inward iterations 
For i from n down to 1 

Multiple-branch linkage connections are taken into 
consideration during the inward iteration.  
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Here, j
iP ,

j
Ri , and 

iC
iP refer to the position, orientation of the 

j-th body, and the center of mass of the i-th body in the i-th 
body frame, and the center of mass of the i-th body, 
respectively. iO refers to the set of all indices of branching 
links of the i-th link body,

jEf refers to j-th external force in the 
set of all external forces )( jM  acting on the link indexed by i, 
and iO refers to the set of indices corresponding to all the 
branch-outs from the i-th body. Note that these equations 
account for the effects that are due to both multi-branch links 
on the incident links and external forces acting on a link. 

The force and moment acting at the floating base of the 
multi-linkage structure are defined as: 
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where BR0  is the orientation of the base in the inertial frame, 
and 1

1 f  and 1
1n  are the force and moment at the base in the 

bodyfixed local frame. 

To write all these equations in a state-space representation, 
we introduce the following notation: 

[ ]
[ ]
[ ] ,,,

,,
)3(,,

33

33

3

NTT
B

T
B

T

NTT
B

T
B

T

NTT
B

T
B

T

RRRnfU
RRRvV

RSORApX

××∈=

××∈=

××∈Θ=

τ
ωω  

where 

system. in the joints ofnumber 
jointson  acting vector  torque)1(

link baseon  acting vector  torque)13(
link baseon  acting vector force )13(

cityjoint veloangular  specifying vector )1(
link base oflocity angular ve specifying vector )13(

itylink veloc base specifying vector )13(
anglejoint  specifying vector )1(

attitudelink  base specifyingmatrix  13)(3
positionlink  base specifyingvector )13(

N
N

n
f

N

v
N

A
 p

B

B

B

B

B

B

×
×
×
×

×
×
×Θ

××
×

τ

ω
ω

 

Recall that we extended the system’s state vector with an 
additional 6-dof for representing the position and orientation of 
the base. Thus, the state-space representation of the dynamics 
is: 

EUUXGVVXCVXH −=+− )(),()( & ,       (1) 

where 

effects sCoriolis' and lcentrifuga                 
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2. Dynamics for Haptic Interaction 

A. Push operation 

For the push operation, we consider the haptic interaction on 
a multi-rigid-body system as an external force applied to it by 
the user, acting at a contact point on the body surface. For 
instance, haptic touch on a robot manipulator is regarded as an 
external contact force (by the haptic device) acting on it, which 
leads to a modification of the forward dynamic equation 
(derived from (1)): 

( ).)(),()(1 XGVXCUXHV E −−= −&         (2) 

EU denotes the joint torque vector corresponding to the contact 
force c  due to collision as follows: 

.     , npenetratiop
T

E dkccJU ==            (3) 

This induces accelerations on the system in response to 
the haptic touch. The contact force at the contact point due 
to the haptic interaction is computed by a lumped spring 
model, where pk is the position gain and npenetratiod is the 
penetration distance between the haptic device and the 
virtual object. 

B. Pull operation 

For the pull operation, we used the impedance controller 
approach introduced by [14]. The impedance controller 
calculates the force F from the virtual spring and damper. In 
particular, the virtual force F is computed by attaching a virtual 
spring and damper from the end-effector position )( endeffX  to 
the PHANToM position )( phX , as in (4). 

( ) ( )endeffphendeffph XXbXXkF && −−−= ,        (4) 

where endeffX and phX are 6-D vectors defining the actual and 
desired position/orientation of the end-effector in Cartesian 
space, and endeffX& and phX& are 6-D vectors representing the 
actual and desired velocities of the positions/orientations of the 
end-effector, respectively. In addition, k and b are stiffness and 
damping matrices, respectively. These last two tunable 
parameters affect the sense of contact the operator feels through 
the haptic device. Then, the desired force is produced by 
applying torque τ  at the joints, which are calculated using the 

Jacobian )( endeffJ θ as in the following relation: 

.)( FJ T
endeffθτ =  

Thisτ in turn is fed into (1) to compute the corresponding joint 
motions for the articulated structure. 

3. Integration of I-GMS with PHANToM 

Our prototype hardware system for performing haptic 
interaction consists of a 3-dof PHANToM haptic device [12], 
an SGI O2 graphics workstation (graphics display) and an SGI 
Octane (dynamic computation server). The graphics keeps 
track of the position updates of the PHANToM finger tip. The 
PHANToM generates force-feedback using collision/ 
penetration information between the finger tip and the body. 
The operator can use the PHANToM to touch a rigid object in 
the virtual scene.We integrated I-GMS's manipulator dynamics 
into our haptic-interaction application which was developed 
using the C++ General Haptic Open Software Toolkit (GHOST 
SDK) [15]. Both haptic and dynamic computations occur in the 
same servo cycle to enable us to reflect the appropriate I-GMS 
state change within the GHOST application. The overall 
system architecture is depicted in Fig. 3. 
 

  

Client 
 

GHOST application 
(Haptics + Graphics) 

Client 
 

I-GMS 
(Multi-Rigid-Body 

Dynamics) 

Current state

Updated state 

SGI 02 SGI Octane 

Ethernet 

PHANToM

PCI connetion 

Fig. 3. Overall system architecture for our interactive dynamic 
simulator. 

 
To achieve realistic feedback of approximately 1 kHz 

frequency, we used two techniques: one is the distribution of 
computations over the network and the other is the use of an 
interpolation of the system’s state between network relays. For 
the distribution of computations, we divided the two major 
tasks (haptics and dynamics) into separate processors using 
socket programming over the UDP/IP layer on the Ethernet. 
The UDP is a connectionless client/server communication 
mechanism that transmits data faster than the TCP, but this 
results in less reliable transmission of data packets. However, 
for us, transmitting data at a faster servo rate is more crucial 
than a possible minimal loss of data. 

To maintain a high servo rate, the client (haptic computation) 
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uses the results computed at a previous time cycle if the remote 
server does not return the dynamics results after a certain preset 
time. The preset time interval is adjustable within I-GMS; 
setting it close to 1 millisecond gave reasonable haptic 
interaction in our experiments. 

V. SIMULATION RESULT 

We demonstrated interactive simulations on a 6-dof robot 
manipulator through on-line editing of pre-planned trajectories. 

1. Push for 6-dof Robot Manipulator 

We consider a simple scenario where a 6-dof robot 
manipulator (Fig. 4) is supposed to follow a straight-line 
trajectory from its starting point until it reaches a wall. When 
there is no obstacle between the robot and the wall, as in Fig. 
4(a), it is not very hard to plan the trajectory and have the robot 
follow it. A straight-line trajectory is given in Fig. 5. However, 
when an obstacle is introduced in the way of the pre-planned 
trajectory, as shown in Fig. 4(b), it is hard to find a collision-
free trajectory for the robot. The real problem is that this 
change in the environment could happen dynamically, thus 
requiring replanning every time there is a change. 

An interactive way of modifying an existing trajectory is an 
efficient way of avoiding costly preprocessing. In our scheme 
for modifying the trajectory, the user uses visual cues to edit the 
pre-planned trajectory using the haptic interaction push mode 
to avoid a collision. The resulting trajectory is a path modified 
by the change in dynamic motion of the manipulator using 
haptic touch. Here, we pushed the second link of the 
manipulator away from the obstacle, since it was touching the 
obstacle while nominally following the pre-planned (straight-
line) trajectory. 

The initial time steps in Fig. 6(a) show a portion of the 
original pre-planned trajectory. This lasts until there is the first 
haptic touch by the user, which is indicated by the force 
 

 
Fig. 4. (a) 6-dof robot manipulator and a wall, (b) 6-dof robot

with an additional obstacle.  

  
Fig. 5. The straight line trajectory. 
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Fig. 6. (a) The trajectory disturbed by a push operation, (b) 
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calculation at time step 11 in Fig. 6(b). Modified trajectories 
resulting from real-time haptic interaction by the user are then 
followed. The forces computed by haptic touches are also 
given in Fig. 6 (b). Note that there is some instantaneous 
change of accelerations due to the user’s haptic interaction. 
These changes in accelerations correspond to the starts of new 
states to be used for subsequent dynamic update (refer to Fig. 
2) during the interleaved operations. In fact, the first such 
change (‘pushing1’) is for the robot to avoid the first collision 
with the obstacle, while the second (‘pushing2’) is to direct the 
robot towards the wall as the original intention of the trajectory 
does. Once haptic interaction occurs, the joint accelerations are 
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maintained until subsequent user interaction, which is evident 
in the plot. The external forces acting at the contact points are 
computed by (3) at time steps 11 and 23 (the magnitude unit is 
N.cm). Also, here joint1, jount2, etc. indicate the usual joints in 
the robot manipulator (Fig. 7). In fact, there are six joints 
available in the robot manipulator provided as an example. 

The simulation snapshots of the modified trajectory are 
given in Fig. 7. This shows the 6-dof manipulator taking a 
detour around the obstacle to avoid it rather than taking the 
original straight-line trajectory. This example shows that just a 
few haptic pushes at appropriate points on the manipulator 
bodies can change the pre-planned trajectory to avoid colliding 
with an obstacle. 
 

  
Fig. 7. Simulation snapshots of the 6-dof robot manipulator 

following the modified trajectory.  

2. Pull for 6-dof Robot Manipulator 

We also performed pull operations on a 6-dof robot 
manipulator. We used the same scenario as in the push mode 
example. This time, to avoid the collision, the user dragged the 
end-effector around the obstacle, which required some care to 
ensure that the second link would not encounter a collision. 

The plots in Fig. 8 show the same information as in the push 
mode example. In other words, the first pulling (‘pulling1’) is 
for the robot to avoid the first collision with the obstacle, while 
the second (‘pulling2’) is to direct the robot towards the wall as 
the original intention of the trajectory does. The actual 
difference here is that the force is computed by a virtual spring 
connecting the PHANToM and the robot’s end-effector, as 
opposed to the contact effect for the push mode. 

Generally, we observed that it was easier for the user to use 
the pulling mode than the pushing mode to change trajectories. 
However, there are some trade-offs in terms of advantages and 
disadvantages in using these two modes of operation for 
trajectory modifications. We found that relatively greater forces 

are required for the dragging operation than the push operation 
and this is natural. This is because the articulated object’s end-
effector is supposed to follow the user’s finger tip position 
(which is basically the position of haptic touch). On the other 
hand, it is harder for the user to guide the articulated bodies 
towards a target position, since the pushing operation is an 
indirect way of achieving the desired motion. Thus, the 
pushing operation usually takes a more sophisticated effort for 
the user to be able to manipulate the articulated bodies 
haptically, but it requires less force to move the articulated 
bodies. 
 

  Fig. 8. The trajectory disturbed by a pull operation. 
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VI. DISCUSSION AND FUTURE WORK 

Our interactive simulation schemes allow the user to adjust 
the behavior of articulated structures by using a haptic interface 
in real time. In particular, we developed both push and pull 
operations to use in the haptic interaction, using full forward 
and inverse dynamics of multi-linkage articulated structures, 
respectively. By using these schemes, the user is allowed to 
push or pull any part of the articulated structures and feel the 
force and impact created by the interaction. This shows 
promise for user interaction even of fairly complex articulated 
structures, such as legged robots, once performance issues are 
resolved to ensure stable haptic interaction. 

Realizing a fast servo-update rate for complex articulated 
structures in a crowded virtual environment is a difficult 
problem to handle, unless some portions of the 
computationally expensive dynamics are relieved in one way 
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or another. We are devising a method to get around this 
problem by trying to simplify portions of the dynamic 
computation involved in the simulation. 

We are also working on incorporating haptic interaction for 
free bodies in contact with an environment. For example, we 
can consider a ball rolling or sliding on a flat surface. We 
regard the contact where the haptics occurs as the primary one 
and the one between the ball and the surface as secondary. Our 
goal is to implement correct haptic interaction even in the 
presence of the secondary contact. This is a complicated 
problem which requires exact contact mechanics to predict a 
physically-correct contact mode at the secondary contact 
whose effect is in turn propagated to the primary contact for the 
appropriate haptic interaction. This exact haptic interaction will 
support more sophisticated user interaction in general 
simulation environments that include free bodies in contact as 
well as articulated structures. 

REFERENCES 

[1] W. Son, K.H. Kim, and N.M. Amato, “An Interactive Generalized 
Motion Simulator (I-GMS) in an Object-Oriented Framework,” 
Proc. Computer Animation’00, 2000, pp. 176-181. 

[2] C. Zilles and K. Salisbury, “A Constraint-Based God-Object 
Method for Haptic Display,” Proc. IEEE-Int’l Conf. on Intelligent 
Robots and Systems, PA, 1995, pp. 146-151. 

[3] D.C. Ruspini, K. Kolarov, and Oussama Khatib, “The Haptic 
Display of Complex Graphical Environments,” SIGGRAPH, 
1997, pp. 345-352. 

[4] T.V. Thompson II, D.E. Johnson, and Elaine Cohen, “Direct 
Haptic Rendering of Sculptured Models,” Symp. on Interactive 
3D Graphics, 1997, pp. 167-176. 

[5] B. Chang and J.E. Colgate, “Real-Time Impulse-Based 
Simulation of Rigid Body Systems for Haptic Display,” Proc. 
Symp. on Interactive 3D Graphics, 1997, pp. 200-209. 

[6] S. Vedula and D. Baraff, “Force Feedback in Interactive Dynamic 
Simulation,” Proc. the First PHANToM User’s Group 
Workshop’96, 1996, pp. 25-31. 

[7] P.J. Berkelman, R.L. Hollis, and D. Baraff, “Interaction with a 
Real-Time Dynamic Environment Simulation Using a Magnetic 
Levitation Haptic Interface Device,” Proc. IEEE Int’l Conf. on 
Robotics and Automation, 1999. pp. 3261-3266. 

[8] V. Popescu, G. Burdea, and M. Bouzit, “Virtual Reality Simulation 
Modeling for a Haptic Glove,” Proc. Computer Animation’99, 
1999, pp. 41-47. 

[9] M.J. Mataric, “Making Complex Articulated Agents Dance: An 
Analysis of Control Methods Drawn from Robotics, Animation, 
and Biology,” Journal of Autonomous Agents and Multi-Agent 
Systems, vol. 2, no. 1, July, 1999, pp. 23-44. 

[10] Ruspini Diego and Oussama Khatib, “Dynamic Models for 
Haptic Rendering Systems,” Advances in Robot Kinematics: 
ARK’98, Strobl/Salzburg, Austria, June 1998, pp. 523-532. 

[11] B.R. Donald and F. Henle, “Using Haptic Vector Fields for 

Animation Motion Control,” Proc. IEEE-Int’l Conf. on Robotics 
and Automation, 2000, pp. 3435-3442. 

[12] T.H. Massie and J.K. Salisbury, “The PHANToM Haptic 
Interface: A Device for Probing Virtual Objects,” Proc. of the 
ASME Int’l Mechanical Engineering Congress and Exhibition, 
vol. DSC 55-1, IL, 1994, pp. 295-302. 

[13] J.J. Craig, Introduction to Robotics, Mechanics, and Control, 
Addison-Wesley, 1986. 

[14] N. Hogan, “Impedance Control,” Journal of Dynamics Systems, 
Measurement, and Control, vol. 107, no. 3, Sept. 1985, pp. 1-24. 

[15] SensAble Technologies Inc., GHOST Software Developer’s 
Toolkit: Programmer’s Guide Version 2.1, MA, 1999. 

 

Wookho Son received the BS degree in 
computer science from Yonsei University in 
Korea in 1987 and the MS and PhD degrees in 
computer science from Texas A&M University 
in the US in 1996 and 2001. He is currently 
working as a Senior Research Scientist at the 
Virtual Reality Research Center in Electronics 
and Telecommunications Research Institute 

(ETRI) in Daejeon, Korea. His research interests include virtual reality 
(especially haptic interaction), robotics, and physically-based dynamic 
simulation. 
 

Kyunghwan Kim received the BE degree in 
electrical engineering from Yonsei University in 
Korea in 1992 and the ME and PhD degrees in 
electrical engineering from the University of 
Tokyo in Japan in 1994 and 1997. From Sept. 
1997 to Aug. 1999, he was a Postdoctoral 
Research Associate at the University of 
Wisconsin-Madison and Texas A & M 

University. From Sept. 1999 to June 2002, he was a Senior Research 
Scientist in the Korea Institute of Science and Technology (KIST) in 
Seoul, Korea. He is currently a Director of Wooshin Mechatronics Co., 
Ltd. His research interests include robotics (especially, human-
computer interface), micro and nano robotics, and semiconductor 
handling. 
 

Byungtae Jang received the BS degree in 
atmospheric science from Seoul National 
University in Korea in 1989 and the MS and the 
PhD degrees in computer science from 
Chungnam National University in 1994 and 
2001. From 1989 to 1996, he was a Senior 
Research Member at Software Engineering 
Research Institute (SERI) in Daejeon, Korea. 

Since joining Electronics and Telecommunications Research Institute 
(ETRI) in Daejeon, Korea, in 1997, he has been working as a Principal 
Researcher at the Virtual Reality Research Center leading the 
Augmented Reality Research Group. His research interests include 
virtual reality (especially, augmented reality), image processing, and 
human-computer interaction. 



ETRI Journal, Volume 25, Number 1, February 2003  Wookho Son et al.   33 

Byungtae Choi received the BS degree in 
electronic engineering from Kyungbook 
National University in Korea in 1989 and the 
MS degree in computer science from Korea 
Advanced Institute of Science and Technology 
(KAIST) in Daejeon, Korea. From Jan. 1986 
to Sept. 1988, he worked at Samsung 
Electronics Co., Ltd., Seoul. Since joining 

Electronics and Telecommunications Research Institute (ETRI), 
Daejeon, in 1989, he has been working as a Principal Researcher at the 
Virtual Reality Research Center leading the 3D Graphics Research 
Group. His research interests include in virtual reality, computer 
graphics, computer vision, and robotics. 
 


