
ETRI Journal, Volume 25, Number 1, February 2003 Wookho Son et al. 25

This paper describes interactive dynamic simulation
schemes for articulated bodies in virtual environments,
where user interaction is allowed through a haptic interface.
We incorporated these schemes into our dynamic simulator
I-GMS, which was developed in an object-oriented
framework for simulating motions of free bodies and
complex linkages, such as those needed for robotic systems
or human body simulation. User interaction is achieved by
performing push and pull operations with the PHANToM
haptic device, which runs as an integrated part of I-GMS.
We use both forward and inverse dynamics of articulated
bodies for the haptic interaction by the push and pull
operations, respectively. We demonstrate the user-
interaction capability of I-GMS through on-line editing of
trajectories for 6-dof (degrees of freedom) articulated bodies.

Manuscript received Mar. 12, 2002; revised Oct. 28, 2002.
Wookho Son (phone: +82 42 860 5031, e-mail: whson@etri.re.kr) and Byungtae Jang (e-

mail: jbt@etri.re.kr) are with Augmented Reality Research Team, ETRI, Daejeon, Korea.
Byungtae Choi (e-mail: btchoi@etri.re.kr) is with 3D Graphics Research Team, ETRI,

Daejeon, Korea.
Kyunghwan Kim (e-mail: kimk@wooshin-m.com) is with Wooshin Mechatronics Co., Ltd.,

Seoul, Korea.

I. INTRODUCTION

A simulation environment contains multi-rigid-body systems,
each of which consists of a number of passive bodies, called
free bodies, that move in response to external forces or forces
arising from contacts and a number of active bodies that are
actuated. Dynamic simulation advances over time steps by
successively predicting the accelerations (and contact forces of
any rigid bodies that are in contact) of the multi-rigid-body
systems in the environment.

Dynamic motion simulation arises in many engineering
application domains, such as virtual reality, graphics, robot
motion simulators, and computer games. For example,
interaction with the virtual environment by the user in real time
is becoming increasingly important in computer games. This
interaction is achieved not only through the user's textual input,
but also by direct touch of an object in the virtual scene. The
addition of force and touch (haptic feedback) to dynamic
simulation increases the simulation realism when the virtual
objects are manipulated by the user during a simulation. In
particular, this sensory modality is highly desirable when the
graphics are corrupted from partial occlusion of manipulated
objects during simulation or when the environment is dark.

Adding haptic interaction to the dynamic simulation has the
effect of exerting user-applied external forces to the active bodies
in the virtual scene to change their dynamic behavior. In other
words, it changes the course of simulation trajectories by keeping
track of changes in dynamics due to outside disturbances such as
contact. This has many applications, such as teleoperation of
robots for remote inspection and virtual training.

In this work, we present two methods of realizing interactive
dynamic simulation through haptic feedback: push and pull
modes. We performed the interactive simulation in our test-bed

Interactive Dynamic Simulation Schemes for
Articulated Bodies through Haptic Interface

 Wookho Son, Kyunghwan Kim, Byungtae Jang, and Byungtae Choi

26 Wookho Son et al. ETRI Journal, Volume 25, Number 1, February 2003

dynamic simulator I-GMS [1], which can simulate dynamic
motions of multi-rigid-bodies in virtual environments. In
particular, the user interaction is demonstrated by on-line
editing and modification of trajectories of articulated bodies in
applications, such as robot manipulators.

This paper is organized as follows. In section II, we
introduce related works. The dynamics simulation system that
incorporates our interactive schemes is described in section III.
The dynamic models we used for the haptic interaction are
discussed in section IV, followed by simulation examples that
demonstrate our interactive schemes in section V. Finally, we
give concluding remarks in section VI.

II. RELATED WORK

Early work on haptic interaction focused on haptic rendering
of graphical environments and used force feedback coupled
with the visual display to realize surface shading, friction, and
texture [2]-[4]. Some proposed dynamic simulators have haptic
interaction capability. One study used an impulse-based
simulation as a general purpose multi-body simulator for haptic
display [5], and another investigated the haptic interaction for a
point contact for rigid body dynamics [6]. Berkelman et al. [7]
provided a tool-based haptic interaction where the user feels
and interacts with the simulation environment through a rigid
tool of a given shape rather than directly with the hand or
fingers. One haptic interaction method used a virtual hand for
grasping dynamic objects and physical modeling of plasticity
[8]. All these studies dealt with haptic interaction for non-
linked free bodies.

Mataric [9] used a control method for a haptic pull
operation similar to ours for performing a continuous
sequence of smooth movements: a physics-based humanoid
torso dancing the Macarena. However, that method
implemented conventional user interaction rather than
haptics.

Another scheme similar to our push operation used a
simplified forward dynamics of multi-chained articulated
figures, but it did not present any real-time simulation example
that used haptic interaction [10]. Our work not only provides an
interactive simulation scheme using a full forward dynamics
but also provides a haptic push operation by using the inverse
dynamics of multi-chained articulated bodies.

Donald and Henle [11] offered a more sophisticated model
that used haptics to browse and edit abstract representations of
animation trajectories. This approach used a vector field
method to allow the user to manipulate motion-captured data.
It was innovative in that it tried to manipulate high degrees of
freedom (dof) animation characters through a low dof control
space by using the PHANToM haptic device. While it

provided manipulation of animation characters, it was through
unintuitive indirect touch rather than direct touch on the
animation character’s body.

III. SYSTEM OVERVIEW

Our interactive simulation schemes were systematically
incorporated into our dynamic simulator, called the I-GMS, to
include the haptic interaction as an external disturbance into
the dynamics of the articulated structures. In fact, the
incorporation process itself self-verifies that our way of
including the interactive schemes into the pre-developed
dynamics is theoretically sound and correct. Thus, it is
important to understand the underlying dynamics of our
backbone simulator to understand subsequent development of
haptic interaction.

1. Object-Oriented Framework of the I-GMS

The I-GMS is implemented in the C++ programming
language and is comprised of object classes representing
geometric entities in the virtual environment: Environment,
MultiBody, Body, FixedBody, and FreeBody. It also contains
auxiliary classes: Transformation, Orientation, DHparameters,
Connection, etc. Each geometric class contains its own
kinematic and dynamic functions as core member functions.
Auxiliary classes support the geometric classes by
characterizing the connections among the component bodies
and determining their positions and orientations via appropriate
kinematic propagations.

Common functions such as kinematics and dynamics for
different multi-rigid-body systems are handled internally
through virtual functions. An application programmer needs to
specify only high-level functions such as ComputeKinematics
and ComputeDynamics in the driver routine to specify the
motions of a multi-rigid-body. The underlying Body class
propagates its basic properties to its derived classes (e.g.,
FreeBody and FixedBody). This is illustrated in Fig. 1. Other
classes can be derived from each of these, for example,
attFixedBody and attFreeBody, where att is a shorthand for
‘attributed.’ For our simulation, we used RigidDynFixedBody
and RigidDynFreeBody to indicate that all the bodies are used
for rigid-body dynamic simulation.

In the I-GMS, a geometric class MultiBody is instantiated to
represent any articulated structure, such as a robot manipulator
or human body model. Thus, it is easy to incorporate the haptic
interaction into the dynamic simulation, since we only need to
modify the dynamics that are implemented as a member
function of the MultiBody class. A more detailed description of
the design of the I-GMS can be found in [1].

ETRI Journal, Volume 25, Number 1, February 2003 Wookho Son et al. 27

Extended I-GMS

HumanBody MultiBody

virtual ForwardKinematics()
virtual InverseKinematics()
virtual ForwardDynamics()
virtual InverseDynamics()

Class derivation Body
virtual GetWorldTransform()
virtual GetBackwardConnect()
virtual GetForwardConnect()
virtual ComputeDynamics()

FreeBody FixedBody

attFreeBody attFixedBody

Virtual NewtonEulerDynamics()

Basic I-GMS

Fig. 1. Class hierarchy within the I-GMS.

2. Interactive Simulation through Haptics Interaction

We support interactive simulation through haptic interaction.
Through real-time user interaction, we are able to modify an
existing path or generate an arbitrary trajectory during
simulation. Generating a trajectory can be a tedious off-line job
if the code must be modified every time we need a modified
(or new) trajectory for a robot manipulator to follow. With
interactive simulation, we can adjust or create trajectories
during the simulation. In particular, the user interaction is
focused on the on-line editing and creation of trajectories for
articulated manipulators. The PHANToM haptic device [12]
achieves interactive simulation in two modes in our simulation:
push and pull operations.

A push operation, which occurs at the point of contact
between the PHANToM and the virtual object, triggers the
contact force at the contact point and is incorporated as an
external disturbance into the forward dynamics (see (2) in
section IV.2). In this way, a new acceleration is computed
whenever haptic interaction occurs. This new acceleration
determines the new starting state of the system from which
trajectory generation is resumed (or integration is performed
using the new acceleration) and continued until the occurrence
of the next haptic interaction event. The change in the trajectory
after the haptic touch occurs in real time.

In a pull operation, the PHANToM is attached to an
articulated object, and the user can drag it around the workspace.
For example, the PHANToM can be attached to the end-
effector of an articulated structure in the workspace so that the
joint motion can be followed dynamically as the user intends.
Since we attach the PHANToM to the end-effector, the user is
also able to feel the dragging force which corresponds to the

dynamic motion of the robot. Since the operation occurs in
Cartesian space, this operation allows a more intuitive
interaction for the user. This is explained in detail in section IV.
2.

Since a user usually performs haptic interaction in a sporadic
manner, computations of the new system state and the ensuing
trajectory generation are repeated in an interleaved fashion
during simulation. This situation is illustrated in Fig. 2.

Initially planned trajectory without haptic interaction

Starts of modified trajectories through user interactions

Duration of haptic interaction

Time elapsed

Fig. 2. Interactive simulation as a sequence of interleaved
operations.

This simple scheme of modifying a trajectory in real time

can be incorporated into the usual simulation steps as follows:

Steps for Interactive Simulation

WHILE (not stopped) DO
IF (there is a haptic input) (push or pull)

THEN
Compute joint accelerations using forward or inverse dynamic equation;

ELSE
Compute joint trajectory to follow;
Compute the joint torques using inverse dynamics;
Compute joint accelerations using forward dynamics;
Update system's state.

IV. DYNAMIC MODELS

Our objective is to deal with haptic interaction for articulated
structures by considering this interaction as a change in the
dynamic behavior of the underlying structures. We achieve this
by incorporating the contact point as an external force into the
exact dynamics of the articulated structures. Thus, it is crucial
to describe the dynamics of the articulated structures in detail
for further development of the haptic inclusion into the
dynamic simulator. For our investigation, we describe the

28 Wookho Son et al. ETRI Journal, Volume 25, Number 1, February 2003

dynamics supported in the I-GMS by motion equations for a
generalized articulated structure, while explaining the inclusion
of the haptic interaction as an external disturbance that changes
the underlying dynamics.

1. Multi-Branch Structure with a Floating Base

An articulated structure with a multi-branch linkage and a
floating base can be used to model very complex structures
such as a human body model. To describe the dynamics, we
extended the recursive Newton-Euler dynamics algorithm [13]
(used for the fixed-base case).

Here, the base is considered as a free-falling body in deriving
the equations. Thus, we attached a moving frame to the base,
which resulted in an additional 6-dof for representing its
position and orientation. To consider the moveable base, we
added the following equations to the outward iteration of the
fixed-base case, so that the positional and angular acceleration
of every link is propagated starting from the moving base link.
(The notation was adopted from [13].)

Outward iterations
For base case,

()

.
0

0

01

0
1

1
1

0
1

1
1

0
11

C

C

CC

R

R

gvRV

ωω

ωω
&&

&&

=

=

+=

Here,
0Cv& , ,

0Cω and
0Cω& are the linear acceleration, angular

velocity, and angular acceleration of the center of mass of the
base body, respectively.

For i from 1 to n – 1,

()()
()

.

ˆˆ

ˆ

1
1

11
1

1
1

11
1

1
11

1

1
1111

1
11

11
1

1
1

1
1

11
1

1
11

1
1

1
1

1
11

1
1

11

1

111

+
+

++
+

+
+

++
+

+
++

+

+
++++

+
++

++
+

+
+

+
+

++
+

+
++

+
+

+
+

+
++

+
+

++

+

+++

×+=

=

+××+×=

+××+×=

+×+=

++=

i
i

i
C

i
i

i
i

i
C

i
i

C
i

ii
i

i
i

C
i

i
i

i
i

C
i

i
i

C
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

ii
i

ii
i

i
i

i
i

i
i

i
i

i
i

ii
i

i
i

i
i

IIN

vmF

vPPv

vPPRv

ZZRR

ZR

ii

i

iii

ωωω

ωωω
ωωω

θθωωω

θωω

&

&

&&&

&&&

&&&&&

&

Inward iterations
For i from n down to 1

Multiple-branch linkage connections are taken into
consideration during the inward iteration.

.ˆ

][

0

1

0
0

iii

ij

i

j

i

zn

FPNfc

fRPnRn

FfRfRf

iTi

i
i

C
i

i
i

Ej
j

j
j

j
i

i
i

j
j

j
i

i
i

i
i

Oj
E

i
j

j

Oj
j

i
i

i

=

×++×−

×+=

++=

∑

∑

∑∑

+

∈∈

τ

Here, j
iP ,

j
Ri , and

iC
iP refer to the position, orientation of the

j-th body, and the center of mass of the i-th body in the i-th
body frame, and the center of mass of the i-th body,
respectively. iO refers to the set of all indices of branching
links of the i-th link body,

jEf refers to j-th external force in the
set of all external forces)(jM acting on the link indexed by i,
and iO refers to the set of indices corresponding to all the
branch-outs from the i-th body. Note that these equations
account for the effects that are due to both multi-branch links
on the incident links and external forces acting on a link.

The force and moment acting at the floating base of the
multi-linkage structure are defined as:

,1
1

1
1

nRn
fRf

B
o

B

B
o

B

=

=

where BR0 is the orientation of the base in the inertial frame,
and 1

1 f and 1
1n are the force and moment at the base in the

bodyfixed local frame.

To write all these equations in a state-space representation,
we introduce the following notation:

[]
[]
[] ,,,

,,
)3(,,

33

33

3

NTT
B

T
B

T

NTT
B

T
B

T

NTT
B

T
B

T

RRRnfU
RRRvV

RSORApX

××∈=

××∈=

××∈Θ=

τ
ωω

where

system. in the joints ofnumber
jointson acting vector torque)1(

link baseon acting vector torque)13(
link baseon acting vector force)13(

cityjoint veloangular specifying vector)1(
link base oflocity angular ve specifying vector)13(

itylink veloc base specifying vector)13(
anglejoint specifying vector)1(

attitudelink base specifyingmatrix 13)(3
positionlink base specifyingvector)13(

N
N

n
f

N

v
N

A
 p

B

B

B

B

B

B

×
×
×
×

×
×
×Θ

××
×

τ

ω
ω

Recall that we extended the system’s state vector with an
additional 6-dof for representing the position and orientation of
the base. Thus, the state-space representation of the dynamics
is:

EUUXGVVXCVXH −=+−)(),()(& , (1)

where

effects sCoriolis' and lcentrifuga
 thespecifyingmatrix)6()6(),(

matrix inertia)6()6()(
+×+
+×+

NNVXC
NNXH

ETRI Journal, Volume 25, Number 1, February 2003 Wookho Son et al. 29

forces. externalby generated
force dgeneralize pecifying 1)6(

effectsgravity 1)6()(
sNU

NXG

E ×+
×+

2. Dynamics for Haptic Interaction

A. Push operation

For the push operation, we consider the haptic interaction on
a multi-rigid-body system as an external force applied to it by
the user, acting at a contact point on the body surface. For
instance, haptic touch on a robot manipulator is regarded as an
external contact force (by the haptic device) acting on it, which
leads to a modification of the forward dynamic equation
(derived from (1)):

().)(),()(1 XGVXCUXHV E −−= −& (2)

EU denotes the joint torque vector corresponding to the contact
force c due to collision as follows:

. , npenetratiop
T

E dkccJU == (3)

This induces accelerations on the system in response to
the haptic touch. The contact force at the contact point due
to the haptic interaction is computed by a lumped spring
model, where pk is the position gain and npenetratiod is the
penetration distance between the haptic device and the
virtual object.

B. Pull operation

For the pull operation, we used the impedance controller
approach introduced by [14]. The impedance controller
calculates the force F from the virtual spring and damper. In
particular, the virtual force F is computed by attaching a virtual
spring and damper from the end-effector position)(endeffX to
the PHANToM position)(phX , as in (4).

() ()endeffphendeffph XXbXXkF && −−−= , (4)

where endeffX and phX are 6-D vectors defining the actual and
desired position/orientation of the end-effector in Cartesian
space, and endeffX& and phX& are 6-D vectors representing the
actual and desired velocities of the positions/orientations of the
end-effector, respectively. In addition, k and b are stiffness and
damping matrices, respectively. These last two tunable
parameters affect the sense of contact the operator feels through
the haptic device. Then, the desired force is produced by
applying torque τ at the joints, which are calculated using the

Jacobian)(endeffJ θ as in the following relation:

.)(FJ T
endeffθτ =

Thisτ in turn is fed into (1) to compute the corresponding joint
motions for the articulated structure.

3. Integration of I-GMS with PHANToM

Our prototype hardware system for performing haptic
interaction consists of a 3-dof PHANToM haptic device [12],
an SGI O2 graphics workstation (graphics display) and an SGI
Octane (dynamic computation server). The graphics keeps
track of the position updates of the PHANToM finger tip. The
PHANToM generates force-feedback using collision/
penetration information between the finger tip and the body.
The operator can use the PHANToM to touch a rigid object in
the virtual scene.We integrated I-GMS's manipulator dynamics
into our haptic-interaction application which was developed
using the C++ General Haptic Open Software Toolkit (GHOST
SDK) [15]. Both haptic and dynamic computations occur in the
same servo cycle to enable us to reflect the appropriate I-GMS
state change within the GHOST application. The overall
system architecture is depicted in Fig. 3.

Client

GHOST application
(Haptics + Graphics)

Client

I-GMS
(Multi-Rigid-Body

Dynamics)

Current state

Updated state

SGI 02 SGI Octane

Ethernet

PHANToM

PCI connetion

Fig. 3. Overall system architecture for our interactive dynamic
simulator.

To achieve realistic feedback of approximately 1 kHz

frequency, we used two techniques: one is the distribution of
computations over the network and the other is the use of an
interpolation of the system’s state between network relays. For
the distribution of computations, we divided the two major
tasks (haptics and dynamics) into separate processors using
socket programming over the UDP/IP layer on the Ethernet.
The UDP is a connectionless client/server communication
mechanism that transmits data faster than the TCP, but this
results in less reliable transmission of data packets. However,
for us, transmitting data at a faster servo rate is more crucial
than a possible minimal loss of data.

To maintain a high servo rate, the client (haptic computation)

30 Wookho Son et al. ETRI Journal, Volume 25, Number 1, February 2003

uses the results computed at a previous time cycle if the remote
server does not return the dynamics results after a certain preset
time. The preset time interval is adjustable within I-GMS;
setting it close to 1 millisecond gave reasonable haptic
interaction in our experiments.

V. SIMULATION RESULT

We demonstrated interactive simulations on a 6-dof robot
manipulator through on-line editing of pre-planned trajectories.

1. Push for 6-dof Robot Manipulator

We consider a simple scenario where a 6-dof robot
manipulator (Fig. 4) is supposed to follow a straight-line
trajectory from its starting point until it reaches a wall. When
there is no obstacle between the robot and the wall, as in Fig.
4(a), it is not very hard to plan the trajectory and have the robot
follow it. A straight-line trajectory is given in Fig. 5. However,
when an obstacle is introduced in the way of the pre-planned
trajectory, as shown in Fig. 4(b), it is hard to find a collision-
free trajectory for the robot. The real problem is that this
change in the environment could happen dynamically, thus
requiring replanning every time there is a change.

An interactive way of modifying an existing trajectory is an
efficient way of avoiding costly preprocessing. In our scheme
for modifying the trajectory, the user uses visual cues to edit the
pre-planned trajectory using the haptic interaction push mode
to avoid a collision. The resulting trajectory is a path modified
by the change in dynamic motion of the manipulator using
haptic touch. Here, we pushed the second link of the
manipulator away from the obstacle, since it was touching the
obstacle while nominally following the pre-planned (straight-
line) trajectory.

The initial time steps in Fig. 6(a) show a portion of the
original pre-planned trajectory. This lasts until there is the first
haptic touch by the user, which is indicated by the force

Fig. 4. (a) 6-dof robot manipulator and a wall, (b) 6-dof robot

with an additional obstacle.

Fig. 5. The straight line trajectory.

300

200

100

0

-100

-200

-300

0 5 10 15 20 25 30 35 40 45
Time (steps)

Jo
in

t a
cc

el
 (N

.c
m

)

data1
data2
data3
data4
data5
data6

Fig. 6. (a) The trajectory disturbed by a push operation, (b)
Forces computed by haptic touches

data1
data2
data3
data4
data5
data6

0 10 20 30 40 50 60 70 80
Time step (x 0.05 sec)

300

200

100
0

-300

pushing1 pushing2

0 10 20 30 40 50 60 70 80
Time step (x 0.05 sec)

pushing1 pushing2

10

5

0

-5

-10Fo
rc

e
m

ag
ni

tu
de

 (N
.c

m
)

Jo
in

t a
cc

el
 (d

eg
re

e)

-100

-200

(a)

(b)

calculation at time step 11 in Fig. 6(b). Modified trajectories
resulting from real-time haptic interaction by the user are then
followed. The forces computed by haptic touches are also
given in Fig. 6 (b). Note that there is some instantaneous
change of accelerations due to the user’s haptic interaction.
These changes in accelerations correspond to the starts of new
states to be used for subsequent dynamic update (refer to Fig.
2) during the interleaved operations. In fact, the first such
change (‘pushing1’) is for the robot to avoid the first collision
with the obstacle, while the second (‘pushing2’) is to direct the
robot towards the wall as the original intention of the trajectory
does. Once haptic interaction occurs, the joint accelerations are

ETRI Journal, Volume 25, Number 1, February 2003 Wookho Son et al. 31

maintained until subsequent user interaction, which is evident
in the plot. The external forces acting at the contact points are
computed by (3) at time steps 11 and 23 (the magnitude unit is
N.cm). Also, here joint1, jount2, etc. indicate the usual joints in
the robot manipulator (Fig. 7). In fact, there are six joints
available in the robot manipulator provided as an example.

The simulation snapshots of the modified trajectory are
given in Fig. 7. This shows the 6-dof manipulator taking a
detour around the obstacle to avoid it rather than taking the
original straight-line trajectory. This example shows that just a
few haptic pushes at appropriate points on the manipulator
bodies can change the pre-planned trajectory to avoid colliding
with an obstacle.

Fig. 7. Simulation snapshots of the 6-dof robot manipulator

following the modified trajectory.

2. Pull for 6-dof Robot Manipulator

We also performed pull operations on a 6-dof robot
manipulator. We used the same scenario as in the push mode
example. This time, to avoid the collision, the user dragged the
end-effector around the obstacle, which required some care to
ensure that the second link would not encounter a collision.

The plots in Fig. 8 show the same information as in the push
mode example. In other words, the first pulling (‘pulling1’) is
for the robot to avoid the first collision with the obstacle, while
the second (‘pulling2’) is to direct the robot towards the wall as
the original intention of the trajectory does. The actual
difference here is that the force is computed by a virtual spring
connecting the PHANToM and the robot’s end-effector, as
opposed to the contact effect for the push mode.

Generally, we observed that it was easier for the user to use
the pulling mode than the pushing mode to change trajectories.
However, there are some trade-offs in terms of advantages and
disadvantages in using these two modes of operation for
trajectory modifications. We found that relatively greater forces

are required for the dragging operation than the push operation
and this is natural. This is because the articulated object’s end-
effector is supposed to follow the user’s finger tip position
(which is basically the position of haptic touch). On the other
hand, it is harder for the user to guide the articulated bodies
towards a target position, since the pushing operation is an
indirect way of achieving the desired motion. Thus, the
pushing operation usually takes a more sophisticated effort for
the user to be able to manipulate the articulated bodies
haptically, but it requires less force to move the articulated
bodies.

 Fig. 8. The trajectory disturbed by a pull operation.

pulling1 pulling2

pulling1 pulling2

Time step (x 0.05 sec)

0 10 20 30 40 60

data1
data2
data3
data4
data5
data6

 300

100

0

200

Jo
in

t a
cc

el
 (d

eg
re

e)

-100

-200

-300

100

Jo
in

t a
cc

el
 (d

eg
re

e)

50

0

-50

 10 60 50

Time step (x 0.05 sec)

20 30 40 0
-100

VI. DISCUSSION AND FUTURE WORK

Our interactive simulation schemes allow the user to adjust
the behavior of articulated structures by using a haptic interface
in real time. In particular, we developed both push and pull
operations to use in the haptic interaction, using full forward
and inverse dynamics of multi-linkage articulated structures,
respectively. By using these schemes, the user is allowed to
push or pull any part of the articulated structures and feel the
force and impact created by the interaction. This shows
promise for user interaction even of fairly complex articulated
structures, such as legged robots, once performance issues are
resolved to ensure stable haptic interaction.

Realizing a fast servo-update rate for complex articulated
structures in a crowded virtual environment is a difficult
problem to handle, unless some portions of the
computationally expensive dynamics are relieved in one way

32 Wookho Son et al. ETRI Journal, Volume 25, Number 1, February 2003

or another. We are devising a method to get around this
problem by trying to simplify portions of the dynamic
computation involved in the simulation.

We are also working on incorporating haptic interaction for
free bodies in contact with an environment. For example, we
can consider a ball rolling or sliding on a flat surface. We
regard the contact where the haptics occurs as the primary one
and the one between the ball and the surface as secondary. Our
goal is to implement correct haptic interaction even in the
presence of the secondary contact. This is a complicated
problem which requires exact contact mechanics to predict a
physically-correct contact mode at the secondary contact
whose effect is in turn propagated to the primary contact for the
appropriate haptic interaction. This exact haptic interaction will
support more sophisticated user interaction in general
simulation environments that include free bodies in contact as
well as articulated structures.

REFERENCES

[1] W. Son, K.H. Kim, and N.M. Amato, “An Interactive Generalized
Motion Simulator (I-GMS) in an Object-Oriented Framework,”
Proc. Computer Animation’00, 2000, pp. 176-181.

[2] C. Zilles and K. Salisbury, “A Constraint-Based God-Object
Method for Haptic Display,” Proc. IEEE-Int’l Conf. on Intelligent
Robots and Systems, PA, 1995, pp. 146-151.

[3] D.C. Ruspini, K. Kolarov, and Oussama Khatib, “The Haptic
Display of Complex Graphical Environments,” SIGGRAPH,
1997, pp. 345-352.

[4] T.V. Thompson II, D.E. Johnson, and Elaine Cohen, “Direct
Haptic Rendering of Sculptured Models,” Symp. on Interactive
3D Graphics, 1997, pp. 167-176.

[5] B. Chang and J.E. Colgate, “Real-Time Impulse-Based
Simulation of Rigid Body Systems for Haptic Display,” Proc.
Symp. on Interactive 3D Graphics, 1997, pp. 200-209.

[6] S. Vedula and D. Baraff, “Force Feedback in Interactive Dynamic
Simulation,” Proc. the First PHANToM User’s Group
Workshop’96, 1996, pp. 25-31.

[7] P.J. Berkelman, R.L. Hollis, and D. Baraff, “Interaction with a
Real-Time Dynamic Environment Simulation Using a Magnetic
Levitation Haptic Interface Device,” Proc. IEEE Int’l Conf. on
Robotics and Automation, 1999. pp. 3261-3266.

[8] V. Popescu, G. Burdea, and M. Bouzit, “Virtual Reality Simulation
Modeling for a Haptic Glove,” Proc. Computer Animation’99,
1999, pp. 41-47.

[9] M.J. Mataric, “Making Complex Articulated Agents Dance: An
Analysis of Control Methods Drawn from Robotics, Animation,
and Biology,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 2, no. 1, July, 1999, pp. 23-44.

[10] Ruspini Diego and Oussama Khatib, “Dynamic Models for
Haptic Rendering Systems,” Advances in Robot Kinematics:
ARK’98, Strobl/Salzburg, Austria, June 1998, pp. 523-532.

[11] B.R. Donald and F. Henle, “Using Haptic Vector Fields for

Animation Motion Control,” Proc. IEEE-Int’l Conf. on Robotics
and Automation, 2000, pp. 3435-3442.

[12] T.H. Massie and J.K. Salisbury, “The PHANToM Haptic
Interface: A Device for Probing Virtual Objects,” Proc. of the
ASME Int’l Mechanical Engineering Congress and Exhibition,
vol. DSC 55-1, IL, 1994, pp. 295-302.

[13] J.J. Craig, Introduction to Robotics, Mechanics, and Control,
Addison-Wesley, 1986.

[14] N. Hogan, “Impedance Control,” Journal of Dynamics Systems,
Measurement, and Control, vol. 107, no. 3, Sept. 1985, pp. 1-24.

[15] SensAble Technologies Inc., GHOST Software Developer’s
Toolkit: Programmer’s Guide Version 2.1, MA, 1999.

Wookho Son received the BS degree in
computer science from Yonsei University in
Korea in 1987 and the MS and PhD degrees in
computer science from Texas A&M University
in the US in 1996 and 2001. He is currently
working as a Senior Research Scientist at the
Virtual Reality Research Center in Electronics
and Telecommunications Research Institute

(ETRI) in Daejeon, Korea. His research interests include virtual reality
(especially haptic interaction), robotics, and physically-based dynamic
simulation.

Kyunghwan Kim received the BE degree in
electrical engineering from Yonsei University in
Korea in 1992 and the ME and PhD degrees in
electrical engineering from the University of
Tokyo in Japan in 1994 and 1997. From Sept.
1997 to Aug. 1999, he was a Postdoctoral
Research Associate at the University of
Wisconsin-Madison and Texas A & M

University. From Sept. 1999 to June 2002, he was a Senior Research
Scientist in the Korea Institute of Science and Technology (KIST) in
Seoul, Korea. He is currently a Director of Wooshin Mechatronics Co.,
Ltd. His research interests include robotics (especially, human-
computer interface), micro and nano robotics, and semiconductor
handling.

Byungtae Jang received the BS degree in
atmospheric science from Seoul National
University in Korea in 1989 and the MS and the
PhD degrees in computer science from
Chungnam National University in 1994 and
2001. From 1989 to 1996, he was a Senior
Research Member at Software Engineering
Research Institute (SERI) in Daejeon, Korea.

Since joining Electronics and Telecommunications Research Institute
(ETRI) in Daejeon, Korea, in 1997, he has been working as a Principal
Researcher at the Virtual Reality Research Center leading the
Augmented Reality Research Group. His research interests include
virtual reality (especially, augmented reality), image processing, and
human-computer interaction.

ETRI Journal, Volume 25, Number 1, February 2003 Wookho Son et al. 33

Byungtae Choi received the BS degree in
electronic engineering from Kyungbook
National University in Korea in 1989 and the
MS degree in computer science from Korea
Advanced Institute of Science and Technology
(KAIST) in Daejeon, Korea. From Jan. 1986
to Sept. 1988, he worked at Samsung
Electronics Co., Ltd., Seoul. Since joining

Electronics and Telecommunications Research Institute (ETRI),
Daejeon, in 1989, he has been working as a Principal Researcher at the
Virtual Reality Research Center leading the 3D Graphics Research
Group. His research interests include in virtual reality, computer
graphics, computer vision, and robotics.

