DOI QR코드

DOI QR Code

Conformational Lock and Dissociative Thermal Inactivation of Lentil Seedling Amine Oxidase

  • Moosavi-Nejad, S. Zahra (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Moosavi-Movahedi, Ali-Akbar (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Rezaei-Tavirani, Mostafa (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Floris, Giovanni (Department of Sciences Applied to Biosystems, University of Cagliari) ;
  • Medda, Rosaria (Department of Sciences Applied to Biosystems, University of Cagliari)
  • Published : 2003.03.31

Abstract

The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between $47-60^{\circ}C$. The thermal inactivation curves were not linear at 52 and $57^{\circ}C$; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to $57^{\circ}C$. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.

Keywords

References

  1. Aceto, A., Caccuri, M., Sacchetta, P., Bucciarelli, T., Dragani, B., Rosato, N., Federici, G. and Di IIio, C. (1992) Dissociation and unfolding of Pi-class glutathione transferase. Biochem. J. 285, 241-245.
  2. Achee, F. M., Chervenka, C. H., Smith, R. A and Yasunobu, K. T. (1968) Amine oxidase. XII. The association and dissociation and number of subunits of beef plasma amine oxidase. Biochemistry 7, 4329-4335. https://doi.org/10.1021/bi00852a027
  3. Agostinelli, E., De Matteis, G., Sinibaldi, A., Mondovi, B. and Morpurgo, L. (1997) Reactions of the oxidized organic cofactor in copper-depleted bovine serum amine oxidase. Biochem. J. 324, 497-501.
  4. Bai, J. H., Wang, H. J., Liu, D. S. and Zhou, H. M. (1997) Kinetics of thermal inactivation of lactate dehydrogenase from rabbit muscle. J. Protein Chem. 16, 801-807. https://doi.org/10.1023/A:1026320001709
  5. Befani, O., Shiozaki, T. S., Turini, P., Gerosa, P. and Mondovi, B. (1995) Inhibition of diamine oxidase activity by metronidazole. Biochem. Biophys. Res. Commun. 212, 589-594. https://doi.org/10.1006/bbrc.1995.2010
  6. Buffoni, F. (1995) Semicarbazide-sensitive amine oxidases: some biochemical properties and general considerations. Prog. Brain. Res. 106, 323-331. https://doi.org/10.1016/S0079-6123(08)61228-5
  7. Canals, A., Pous, J., Guasch, A., Benito, A, Ribo, M., Vilanova, M. and Coll, M. (2001) The structure of an engineered domain-swapped ribonuclease dimer and its implications for the evolution of proteins toward oligomerization. Structure (Camb) 9, 967-976. https://doi.org/10.1016/S0969-2126(01)00659-1
  8. Cooper, R. A., Knowles, P. F., Brown, D. E., McGuirl, M. A. and Dooley, D. M. (1992) Evidence for copper and 3,4,6- trihydroxyphenylalanine quinone cofactors in an amine oxidase from the gram-negative bacterium Escherichia coli K-12. Biochem. J. 288, 337-340.
  9. De Francesco, R., Pastore, A, Vecchio, G. and Cortese, R. (1991) Circular dichroism study on the conformational stability of the dimerization domain of transcription factor LFB 1. Biochemistry 30, 143-147. https://doi.org/10.1021/bi00215a021
  10. Engel, J. and Kammerer, R. A. (2000) What are oligomerization domains good for? Matrix Biol. 19, 283-288. https://doi.org/10.1016/S0945-053X(00)00075-5
  11. Floris, G., Giartosio, A. and Rinaldi, A. (1983) Diamine oxidase from Lens esculenta seedlings: purification and properties. Phytochemistry 22, 1871-1874. https://doi.org/10.1016/0031-9422(83)80004-1
  12. Frebort, I., Toyama, H., Matsushita, K., and Adachi, O. (1995) Half-site reactivity with p-nitrophenylhydrazine and subunit separation of the dimeric copper-containing amine oxidase from Aspergillus niger. Biochem. Mol. Biol. Int. 36, 1207-1216.
  13. Harris, T. K. and Davidson, V. L. (1994) Thermal stability of methanol dehydrogenase is altered by the replacement of enzyme-bound $Ca^{2+}$ with $Sr^{2+}$. Biochem. J. 303, 141-145.
  14. Hevel, J. M., Mills, S. A. and Klinman, J. P. (1999) Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase. Biochemistry 38, 3683-3693. https://doi.org/10.1021/bi982199m
  15. Janes, S. M., Mu, D., Wemmer, D., Smith, A. J., Kaur. S., Maltby, D., Burlingame, A. L. and Klinman, J. P. (1990) A new redox cofactor in eukaryotic enzymes, 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 248, 981-987. https://doi.org/10.1126/science.2111581
  16. Jones, N. (1990) Transcriptional regulation by dimerization: two sides to an incestuous relationship. Cell 61, 9-11. https://doi.org/10.1016/0092-8674(90)90207-U
  17. Kumar, V., Dooley, D. M., Freeman, H. C., Guss, J. M., Harvey, I., McGuirl, M. A, Wilce, M. C. and Zubak, V. M. (1996) Crystal structure of a eukaryotic (pea seedling) copper- containing amine oxidase at 2.2 A resolution. Structure 4, 943- 955. https://doi.org/10.1016/S0969-2126(96)00101-3
  18. Levi, V., Rossi, L. P., Castello, P. R. and Gonzales Flecha, F. L. (2000) Oligomerization of the plasma membrane calcium pump involves two regions with different thermal stability. FEBS Letter 483.99-103. https://doi.org/10.1016/S0014-5793(00)02093-7
  19. Li, R., Klinman, J. P. and Mathews, F. S. (1998) Copper amine oxidase from Hansenula polymorpha, the crystal structure determined at 2.4 A resolution reveals the active conformation. Structure 6, 293-307. https://doi.org/10.1016/S0969-2126(98)00033-1
  20. Lyles, G. A (1995) Substrate-specificity of mammalian tissue- bound semicarbazide-sensitive amine oxidase. Prog. Brain. Res. 106, 293-303. https://doi.org/10.1016/S0079-6123(08)61226-1
  21. Lyles, G. A. (1996) Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. Int. J. Biochem. Cell Biol. 28, 259-274. https://doi.org/10.1016/1357-2725(95)00130-1
  22. Maccarrone, M., Rossi, A., Avigliano, L. and Finazzi Agro, A. (1991) Activity and expression of diamine oxidase in lentil seedlings under different growth conditions. Plant Science 79, 51-55. https://doi.org/10.1016/0168-9452(91)90068-J
  23. Massey, J. B. and Churchich, J. E. (1979) Nanosecond spectroscopy of dimeric enzyme: plasma amine oxidase. Biophys. Chem. 9, 157-162. https://doi.org/10.1016/0301-4622(79)87010-6
  24. Medda, R., Padiglia, A., Lorrai, A., Finazzi Agro, A. and Floris, G. (2000) Arginine and ornithine oxidation catalyzed by lentil seedling copper-amine oxidase. J. Protein Chem. 19,51-57. https://doi.org/10.1023/A:1007094909853
  25. Moosavi-Nejad, S. Z., Rezaei-Tavirani, M., Padiglia, A., Floris, G. and Moosavi-Movahedi, A. A. (2001) Amine oxidase from lentil seedlings: energetic domains and effect of temperature on activity. J. Protein Chem. 20, 405-411. https://doi.org/10.1023/A:1012284821503
  26. Neet, K. E. and Timm, D. E. (1994) Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation. Protein Sci. 3, 2167-2174. https://doi.org/10.1002/pro.5560031202
  27. Padiglia, A, Medda, R., Bellelli, A., Agostinelli, E., Morpurgo, L., Mondovi, B., Finazzi Agro, A. and Floris, G. (2001) The reductive and oxidative half-reactions and the role of copper ion in plant and mammalian copper-amine oxidases. Eur. J. Inorg. Chem. 35-42.
  28. Padiglia, A., Medda, R., Pedersen, J. Z., Lorrai, A., Pee, P., Frebor, I. and Floris, G. (1998) Inhibitors of plant copper amine oxidases. J. Enzyme Inhibition 13, 311-325. https://doi.org/10.3109/14756369809021478
  29. Poltorak, O. M., Chukhray, E. S. and Torshin, I. Y. (1998) Dissociative thermal inactivation, stability and activity of oligomeric enzymes. Biochemistry (Moscow) 63, 303-311.
  30. Sacchetta, P., Aceto, A, Bucciarelli, T., Dragani, B., Santarone, S., Allocati, N. and Di Ilio, C. (1993) Multiphasic denaturation of glutathione transferase B1-1 by guanidinium chloride. Role of the dimeric structure on the flexibility of the active site. Eur. J. Biochem. 215, 741-745. https://doi.org/10.1111/j.1432-1033.1993.tb18087.x
  31. Sanchez del Pino, M. M. and Fersht, A. R. (1997) Nonsequential unfolding of the alpha/beta barrel protein indole-3-glycerol- phosphate synthase. Biochemistry 36, 5560-5565. https://doi.org/10.1021/bi963133z
  32. Segel, I. H. (1995) Enzyme Kinetics, pp. 926-942, John Wiley & Sons, Inc., New York.
  33. Sriprapundh, D., Vieille, C. and Zeikus, J. G. (2000) Molecular determinants of xylose isomerase thermal stability and activity: analysis of thermozymes by site-directed mutagenesis. Protein Eng. 13, 259-265. https://doi.org/10.1093/protein/13.4.259
  34. Steif, C., Weber, P., Hinz, H., Flossdorf, J., Cesareni, G. and Kokkinidis, M. (1993) Subunit interactions provide a significant contribution to the stability of the dimeric four-A-Helical- bundle protein ROP. Biochemistry 32, 3867-3876. https://doi.org/10.1021/bi00066a005
  35. Wells, J. A. (1994) Structural and functional basis for hormone binding and receptor oligomerization. Curr. Opin. Cell Biol. 6, 163-173. https://doi.org/10.1016/0955-0674(94)90132-5
  36. Wilce, M. C., Dooley, D. M., Freeman, H. C., Guss, J. M., Matsunami, H., McIntire, W. S., Ruggiero, C. E., Tanizawa, K. and Yamaguchi, H. (1997) Crystal structures of the copper- containing amine oxidase from Arthrobacter globiformis in the holo and apo forms, implications for the biogenesis of topaquinone. Biochemistry 36, 16116-16133. https://doi.org/10.1021/bi971797i
  37. Zaitzeva, E. A, Chukrai, E. S. and Poltorak, O. M. (1996) Thermostability of yeast hexokinase and yeast glucose-6- phosphate dehydrogenase. Appl. Biochem. Biotech. 61,67-74. https://doi.org/10.1007/BF02785689

Cited by

  1. Effect of 2-hydroxypropyl-β-cyclodextrin on thermal stability and aggregation of glycogen phosphorylase b from rabbit skeletal muscle vol.93, pp.11, 2010, https://doi.org/10.1002/bip.21508
  2. Thermal inactivation and conformational lock studies on horse liver alcohol dehydrogenase: Structural mechanism vol.58, 2013, https://doi.org/10.1016/j.ijbiomac.2013.03.038
  3. Comparative Study of the Conformational Lock, Dissociative Thermal Inactivation and Stability of Euphorbia Latex and Lentil Seedling Amine Oxidases vol.24, pp.3, 2005, https://doi.org/10.1007/s10930-005-7842-5
  4. Thermal inactivation and conformational lock studies on glucose oxidase vol.24, pp.4, 2013, https://doi.org/10.1007/s11224-012-0136-6