DOI QR코드

DOI QR Code

Nω-Nitro-L-Arginine Methylester Ameliorates Myocardial Toxicity Induced by Doxorubicin

  • Mansour, Mahmoud Ahmed (Department of Pharmacology, College of Pharmacy, King Saud University) ;
  • El-Din, Ayman Gamal (Department of Pharmacology, College of Pharmacy, King Saud University) ;
  • Nagi, Mahmoud N. (Department of Pharmacology, College of Pharmacy, King Saud University) ;
  • Al-Shabanah, Othman A. (Department of Pharmacology, College of Pharmacy, King Saud University) ;
  • Al-Bekairi, Abdullah M. (Department of Pharmacology, College of Pharmacy, King Saud University)
  • Received : 2003.04.15
  • Accepted : 2003.06.10
  • Published : 2003.11.30

Abstract

The effects of $N{\omega}$-nitro-L-arginine methylester (L-NAME) and L-arginine on cardiotoxicity that is induced by doxorubicin (Dox) were investigated. A single dose of Dox 15 mg/kg i.p. induced cardiotoxicity, manifested biochemically by a significant elevation of serum creatine phosphokinase (CPK) activity [EC 2.7.3.2]. Moreover, cardiotoxicity was further confirmed by a significant increase in lipid peroxides, measured as malon-di-aldehyde (MDA) in cardiac tissue homogenates. The administration of L-NAME 4 mg/kg/d p.o. in drinking water 5 days before and 3 days after the Dox injection significantly ameliorated the cardiotoxic effects of Dox, judged by the improvement in both serum CPK activity and lipid peroxides in the cardiac tissue homogenates. On the other hand, the administration of L-arginine 70 mg/kg/d p.o. did not protect the cardiac tissues against the toxicity that was induced by the Dox treatment. The findings of this study suggest that L-NAME can attenuate the cardiac dysfunction that is produced by the Dox treatment via the mechanism(s), which may involve the inhibition of the nitric oxide (NO) formation. L-NAME may, therefore, be a beneficial remedy for cardiotoxicity that is induced by Dox and can then be used to improve the therapeutic index of Dox.

Keywords

References

  1. Al-Harbi, M. M., Al-Gharably, N. M., Al-Shabanah, O. A., Al-Bekairi, A. M., Osman, A. M. and Tawfik, H. N. (1992)Prevention of doxorubicin-induced myocardial andhaematological toxicities in rats by the iron chelatordesferrioxamine. Cancer Chemother. Pharmacol. 31, 200-204. https://doi.org/10.1007/BF00685548
  2. Al-Shabanah, O., Mansour, M., El-Kashef, H. and Al-Bekair, A.(1998a) Captopril ameliorates myocardial and hematologicaltoxicities induced by adriamycin. Biochem. Mol. Biol. Int. 45,419-427.
  3. Al-Shabanah, O. A., Badary, O. A., Nagi, M. N., Al-Garably, N.,Al-Rikabi, A. and Al-Bekairi, A. M. (1998b) Thymoquinoneprotects against doxorubicin-induced cardiotoxicity withoutcompromising its antitumor activity. J. Exp. Clin. Cancer Res.17, 193-198.
  4. Blum, R. H. and Carter, S. K. (1974) Adriamycin. A newanticancer drug with significant clinical activity. Ann. Intern.Med. 80, 249-259. https://doi.org/10.7326/0003-4819-80-2-249
  5. Buja, L. M., Ferrans, V. J., Mayer, R. J., Roberts, W. C. andHenderson, E. S. (1973) Cardiac ultrastructural changesinduced by doxorubicin therapy. Cancer 32, 771-788. https://doi.org/10.1002/1097-0142(197310)32:4<771::AID-CNCR2820320407>3.0.CO;2-A
  6. Choi, B. M., Pae, H. O., Jang, S. I., Kim, Y. M. and Chung, H. T.(2002) Nitric oxide as a pro-apoptotic as well as anti-apoptoticmodulator J. Biochem. Mol. Biol. 35, 116-126. https://doi.org/10.5483/BMBRep.2002.35.1.116
  7. Corbett, J. A., Tilton, R. G., Chang, K., Hasan, K. S., Ido, Y.,Wang, J. I., Sweetland, M. A., Lancaster, J. R., Williamson, J.R. and McDaniel, M. L. (1992) Aminoguanidine a novelinhibitor of nitric oxide formation prevents diabetic vasculardysfunction. Diabetes 41, 552-556. https://doi.org/10.2337/diabetes.41.4.552
  8. de-Belder, A. J. and Radomski, M. W. (1994) Nitric oxide in theclinical arena. J. Hypertension 12, 617-624.
  9. Doroshow, J. H., Looker, G. Y., Ifrim, I. and Myers, C. E. (1981)Prevention of doxorubicin cardiac toxicity in the mouse by N-acetylcysteine.J. Clin. Invest. 68, 1053-1064. https://doi.org/10.1172/JCI110328
  10. Doroshow, J. H. (1983) Effect of anthracyclin antibiotics onoxygen radical formation in rat heart. Cancer Res. 43, 460-472.
  11. Ellman, G. L. (1959) Tissue sulfahydryl groups. Arch. Biochem.Biophys. 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
  12. Gruber, W. (1978) Inhibition of creatine kinase activity by $Ca^{2+}$and reversing effect of EDTA. Clin. Chem. 24, 177-184.
  13. Higgins, C. P., Baehner, R. L., McCallister, J. and Boxer, L. A.(1978) Polymorph nuclear leukocytes species difference in thedisposal of hydrogen peroxide $(H_2O_2)$. Proc. Soc. Exp. Biol.Med. 158, 478-481. https://doi.org/10.3181/00379727-158-40230
  14. Ishiyama, S., Hiroe, M., Nishikawa, T., Abe, S., Shimojo, T., Ito,H., Ozasa, S., Yamakawa, K., Matsuzaki, M., Mohammed, M.,Nakazawa, H., Kasajima, T. and Marumo, F. (1997) Nitricoxide contributes to the progression of myocardial damages inexperimental autoimmune myocarditis in rats. Circulation 95,489-496. https://doi.org/10.1161/01.CIR.95.2.489
  15. Kaul, N., Siveski-Iiiskovic, N., Slezak, J. and Singal, P. K. (1993)Free radicals and the heart. J. Pharmacol. Toxicol. Meth. 30,55-67. https://doi.org/10.1016/1056-8719(93)90008-3
  16. Misko, T. P., Moore, W. M., Kasten, T. P., Nickols, G. A., Corbett,J. A., Tilton, R. G., McDaniel, M. L. Williamson, J. R. andCurrie, M. (1993) Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur. J. Pharmacol. 233,119-125. https://doi.org/10.1016/0014-2999(93)90357-N
  17. Morishima, I., Matsui, H., Mukawa, H., Hayashi, K., Toki, Y.,Okumura, K., Ito, T. and Hayakawa, T. (2000) Melatonin apineal hormone with antioxidant property protect againstadriamycin cardiomyopathy in rats. Life Science 63, 511-521.
  18. Mostafa, A. M., Nagi, M. N., Al Rikabi, A. C., Al-Shabanah, O.A. and El-Kashef, H. A. (1999) Protective effect ofaminoguanidine against cardiovascular toxicity of chronicdoxorubicin treatment in rats. Res. Commun. Mol. Pathol.Pharmacol. 106, 193-202.
  19. Myers, C. (1998) The role of iron in doxorubicin-inducedcardiomyopathy. Semin. Oncol. 25, 10-14.
  20. Myers, C. E., McGuire, W. P., Liss, R. H., Ifirm, I., Grotzinger, K.and Young, R. C. (1997) Adriamycin: The role of lipidperoxidation in cardiac toxicity and tumor response. Science19, 165-167.
  21. Nagi, M. N. and Mansour, M. A. (2000) Protective effect ofthymoquinone against doxorubicin-induced cardiotoxicity inrats: a possible mechanism of protection. Pharmacol. Res. 41,283-289. https://doi.org/10.1006/phrs.1999.0585
  22. Nathan, C. (1992) Nitric oxide as a secretory product ofmammalian cells. FASEB. J. 6, 3051-3064.
  23. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay of lipidperoxides in normal tissues by thiobarbituric acid reaction.Anal. Biochem. 95, 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  24. Pryor, W. A. and Squadrito, G. L. (1995) The chemistry ofperoxynitrite a product from reaction of nitric oxide withsuperoxide. Am. J. Physiol. 12, 699-722.
  25. Seif-el-Nasr, M. and Fahim, A. T. (2001) Antioxidant effect of N-omega-nitro-L-arginine methyl ester (L-NAME) on global cerebral ischemia in a rat model. Arzneimittelforschung 51, 628-632.
  26. Singal, P. K., Deally, C. M. R. and Weinberg, L. E. (1987)Subcellular effects of adriamycin in the heart: a concise review.J. Mol. Cell Cardiol. 19, 817-828 https://doi.org/10.1016/S0022-2828(87)80392-9
  27. Singal, P. K. and Pierce, G. N. (1986) Adriamycin stimulates lowaffinity calcium binding and lipid peroxidation but depressesmyocardial function. Am. J. Physiol. 1250, 419-425.
  28. Singal, P. K., Siveski-Iliskovic, N., Hill, M., Thomas, T. and Li, T.(1995) Combination therapy with probucol preventsadriamycin-induced cardiomyopathy. J. Mol. Cell Cardiol. 27,1055-1063. https://doi.org/10.1016/0022-2828(95)90074-8
  29. Siveski-Iliskovic, N., Kaul, N. and Singal, P. K. (1994) Probucolpromotes endogenous antioxidants and provides protectionagainst adriamycin-induced cardiomyopathy in rats. Circulation89, 2829-2835. https://doi.org/10.1161/01.CIR.89.6.2829
  30. Tong, J., Ganguly, P. K. and Singal, P. K. (1991) Myocardialadrenergic changes in two stages of heart failure due toadriamycin treatment in rats. Am. J. Physiol. 620, 909-916.
  31. Vivar, V. J., Martasek, P., Hogg, N., Masters, B. S. S., Pritchard,K. A. and Kalyanaraman, B. (1997) Endothelial nitric oxidesynthase dependent superoxide generation from adriamycin.Biochemistry 36, 11293-11297. https://doi.org/10.1021/bi971475e
  32. Xu, M. F., Tang, P. L., Qian, Z. M. and Ashraf, M. (2001) Effectsby doxorubicin on the myocardium are mediated by oxygenfree radicals. Life Sci. 12, 889-890.

Cited by

  1. Intensification of Doxorubicin-Related Oxidative Stress in the Heart by Hypothyroidism Is Not Related to the Expression of Cytochrome P450 NADPH-Reductase and Inducible Nitric Oxide Synthase, As Well As Activity of Xanthine Oxidase vol.2012, 2012, https://doi.org/10.1155/2012/139327
  2. Exercise Training Attenuates Acute Doxorubicin-Induced Cardiac Dysfunction vol.47, pp.2, 2006, https://doi.org/10.1097/01.fjc.0000199682.43448.2d
  3. Different Effects of Resveratrol on Dose-Related Doxorubicin-Induced Heart and Liver Toxicity vol.2012, 2012, https://doi.org/10.1155/2012/606183
  4. The Redox Imbalance and the Reduction of Contractile Protein Content in Rat Hearts Administered with L-Thyroxine and Doxorubicin vol.2012, 2012, https://doi.org/10.1155/2012/681367
  5. Tirapazamine-Doxorubicin Interaction Referring to Heart Oxidative Stress and Ca2+Balance Protein Levels vol.2012, 2012, https://doi.org/10.1155/2012/890826