DOI QR코드

DOI QR Code

Oxidative Modification of Neurofilament-L by Copper-catalyzed Reaction

  • Kim, Nam-Hoon (Department of Genetic Engineering, Chongju University) ;
  • Kang, Jung-Hoon (Department of Genetic Engineering, Chongju University)
  • Received : 2003.04.04
  • Accepted : 2003.04.23
  • Published : 2003.09.30

Abstract

Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for neuronal survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of copper and peroxide in the modification of NF-L. When disassembled NF-L was incubated with copper ion and hydrogen peroxide, then the aggregation of protein was proportional to copper and hydrogen peroxide concentrations. Dityrosine crosslink formation was obtained in copper-mediated NF-L aggregates. The copper-mediated modification of NF-L was significantly inhibited by thiol antioxidants, N-acetylcysteine, glutathione, and thiourea. A thioflavin-T binding assay was performed to determine whether the copper/$H_2O_2$ system-induced in vitro aggregation of NF-L displays amyloid-like characteristics. The aggregate of NF-L displayed thioflavin T reactivity, which was reminiscent of amyloid. This study suggests that copper-mediated NF-L modification might be closely related to oxidative reactions which may play a critical role in neurodegenerative diseases.

Keywords

References

  1. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  2. Berlett, B. S. and Stadtman, E. R. (1992) Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316.
  3. Brady, S. T. (1993) Motor neurons and neurofilaments in sickness and in health. Cell 73, 1-3. https://doi.org/10.1016/0092-8674(93)90151-F
  4. Cohlberg, J. A., Hajarian, H., Tran, T., Alipourjeddi, P. and Noveen, A. (1995) Neurofilament protein heterotetramers as assembly intermediates. J. Biol. Chem. 270, 9334-9339. https://doi.org/10.1074/jbc.270.16.9334
  5. Crow, F., Ye, Y. Z., Strong, M., Kirk, M., Barnes, S. and Beckman, J. S. (1997) Superoxide dismutase catalyzes nitration of tyrosines by peroxynitrite in the rod and head domains of neurofilament-L. J. Neurochem. 69, 1945-1953.
  6. Edwards, M. J., Hargreaves, I. P., Heales, S. J., Jones, S. J., Ramachandran, V., Bhatia, K. P. and Sisodiya, S. (2002) Nacetylcysteine and Unerricht-Lundborg disease: variable response and possible side effects. Neurology 59, 1447-1449. https://doi.org/10.1212/WNL.59.9.1447
  7. Eum, W. S. and Kang, J. H. (1999) Release of copper ions from the familial amyotrophic lateral sclerosis-associated Cu,Znsuperoxide dismutase mutants. Mol. Cells 9, 110-114.
  8. Felix, K., Pairet, M. and Zimmermann, R. (1996) The antioxidative activity of the mucoregulatory agents: ambroxol, bromhexine and N-acetyl-L-cysteine. A pulse radiolysis study. Life Sci. 59, 1141-1147. https://doi.org/10.1016/0024-3205(96)00431-6
  9. Floyd, R. A. and Hensley, K. (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795-807. https://doi.org/10.1016/S0197-4580(02)00019-2
  10. Forno, L. S. (1986) The Lewy body in Parkinsons disease. Adv. Neurol. 45, 35-42.
  11. Gibb, W. R. G. and Lees, A. J. (1989) The significance of the Lewy body in the diagnosis of idiopathic Parkinsons disease. Neuropathol. Appl. Neurobiol. 15, 27-44. https://doi.org/10.1111/j.1365-2990.1989.tb01147.x
  12. Halliwell, B. and Gutteridge, J. M. C. (1999) Free radicals in biology and medicine. Oxford Press, New York, USA.
  13. Halliwell, B. (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson's disease, Alzheimer’s disease, traumatic injury or stroke? Acta Neurol. Scand. 126, 23-33.
  14. Hoffman, P., Cleveland, D., Griffin, J., Landes, P., Cowan, N. and Price, D. (1987) Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA 84, 3472-3476. https://doi.org/10.1073/pnas.84.10.3472
  15. Jenner, P. and Olanow, C. W. (1996) Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47, S161-170. https://doi.org/10.1212/WNL.47.6_Suppl_3.161S
  16. Jimenez, I. and Speisky, H. (2000) Effects of copper ions on the free radical-scavenging properties of reduced glutathione: implications of a complex formation. J. Trace. Elem. Med. Biol. 14, 161-167. https://doi.org/10.1016/S0946-672X(00)80005-X
  17. Kang, J. H. and Kim, S. M. (1997) Fragmentation of human Cu,Zn-superoxide dismutase by peroxidative reaction. Mol. Cells 7, 553-558.
  18. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  19. Markesbery, W. R. and Carney, J. M. (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol. 9, 133-146.
  20. Multhaup, G., Schlicksupp, A., Hesse, L., Behler, D., Ruppert, T., Masters, C. L. and Beyreuther, K. (1996) The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I). Science 271, 1406-1409. https://doi.org/10.1126/science.271.5254.1406
  21. Nagano, S., Fujii, Y., Yamamoto, T., Taniyama, M., Fukada, K., Yanagihara, T. and Sakoda, S. (2003) The efficacy of trientine or ascorbate alone compared to the combined treatment with these two agents in familial amyotrophic lateral sclerosis model mice. Exp. Neurol. 179, 176-180. https://doi.org/10.1016/S0014-4886(02)00014-6
  22. Nixon, R. A. and Lewis, S. E. (1986) Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo. J. Biol. Chem. 261, 16298-16301.
  23. Nixon, R. A. and Shea, T. B. (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton 22, 81-91. https://doi.org/10.1002/cm.970220202
  24. O’Connell, M. J. and Peters, T. J. (1987) Ferritin and haemosiderin in free radical generation, lipid peroxidation and protein damage. Chem. Phys. Lipids 45, 241-249. https://doi.org/10.1016/0009-3084(87)90067-3
  25. Ozdener, F., Kunapuli, S. P. and Daniel, J. L. (2002) Expression of enzymatically-active phospholipase $C{\gamma}2$ in E. coli. J. Biochem. Mol. Biol. 35, 508-512. https://doi.org/10.5483/BMBRep.2002.35.5.508
  26. Pall, H. S., Williams, A. C., Blake, D. R., Lunec, J., Gutteridge, J. M., Hall, M. and Taylor, A. (1987) Raised cerebrospinal-fluid copper concentration in Parkinson's disease. Lancet 2, 238-241.
  27. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
  28. Stadtman, E. R. (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu. Rev. Biochem. 62, 797-821. https://doi.org/10.1146/annurev.bi.62.070193.004053
  29. Treerattrakool, S., Eurwlaichitr, L., Udomkit, A. and Panyim, S. (2002) Secretion of pem-CMG, a peptide in the CHH/MIH/GIH family of Penaeus monodon, in Phichia pastoris is detected by secretion signal of the ${\alpha}-mating$ factor from Saccharomyces cerevisiae. J. Biochem. Mol. Biol. 35, 476-481. https://doi.org/10.5483/BMBRep.2002.35.5.476
  30. Yim, M. B., Kang, J. H., Yim, H. S., Kwak, H. S., Chock, P. B. and Stadtman, E. R. (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acad. Sci. USA 93, 5709-5714. https://doi.org/10.1073/pnas.93.12.5709
  31. Youdim, M. B., Ben-Schachar, D. and Riederer, P. (1989) Is Parkinson's disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol. Scand. 126, 47-54.
  32. Zhu, B. Z., Antholine, W. E. and Frei, B. (2002) Thiourea protects against copper-induced oxidative damage by formation of a redox-inactive thiourea-copper complex. Free Radic. Biol. Med. 32, 1333-1338. https://doi.org/10.1016/S0891-5849(02)00847-X

Cited by

  1. Role of zinc in ALS vol.8, pp.3, 2007, https://doi.org/10.1080/17482960701249241
  2. Oxidative modification of neurofilament-L by the Cu,Zn-superoxide dismutase and hydrogen peroxide system vol.86, pp.8, 2004, https://doi.org/10.1016/j.biochi.2004.07.006
  3. Protective Effects of Carnosine and Anserine on Oxidative Modification of Neurofilament-L Induced by Catechol Neurotoxin, Tetrahydropapaveroline vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.731
  4. Salsolinol, a tetrahydroisoquinoline-derived neurotoxin, induces oxidative modification of neurofilament-L: protection by histidyl dipeptides vol.45, pp.2, 2012, https://doi.org/10.5483/BMBRep.2012.45.2.114
  5. Oxidative modification of neurofilament-L and neuronal cell death induced by the catechol neurotoxin, tetrahydropapaveroline vol.217, pp.1, 2013, https://doi.org/10.1016/j.toxlet.2012.11.029
  6. In vitro assay of neurofilament light chain self-assembly using truncated mutants vol.161, pp.2, 2007, https://doi.org/10.1016/j.jneumeth.2006.10.022