DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of an NADPH Quinone Oxidoreductase from Kluyveromyces marxianus

  • Kim, Wook-Hyun (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Chung, Ji-Hyung (Yonsei Research Institute of Aging Science, and Yonsei Cardiovascular Research Institute, Yonsei University) ;
  • Back, Jung-Ho (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Choi, Ju-Hyun (Biomedical Research Center, Korea Institute of Science and Technology) ;
  • Cha, Joo-Hwan (Biochemicals Research Center, Korea Institute of Science and Technology) ;
  • Koh, Hun-Yeoung (Biochemicals Research Center, Korea Institute of Science and Technology) ;
  • Han, Ye-Sun (Biomedical Research Center, Korea Institute of Science and Technology)
  • Received : 2003.02.17
  • Accepted : 2003.03.11
  • Published : 2003.09.30

Abstract

NAD(P)H quinone oxidoreductase is a ubiquitous enzyme that is known to directly reduce quinone substrates to hydroquinones by a two-electron reaction. We report the identification of NADPH quinone oxidoreductase from Kluyveromyces marxianus (KmQOR), which reduces quinone substrates directly to hydroquinones. The KmQOR gene was sequenced, expressed in Escherichia coli, purified, and characterized. The open-reading frame of the KmQOR gene consists of 1143 nucleotides, encoding a 380 amino acid polypeptide. The nucleotide sequence of the KmQOR gene was assigned to EMBL under accession number AY040868. The $M_r$ that was determined by SDS-PAGE for the protein subunit was about 42 kDa, and the molecular mass of the native KmQOR was 84 kDa, as determined by column calibration, indicating that the native protein is a homodimer. The KmQOR protein efficiently reduced 1,4-benzoquinone, whereas no activities were found for menadiones and methoxyquinones. These observations, and the result of an extended sequence analysis of known NADPH quinone oxidoreductase, suggest that KmQOR possesses a different action mechanism.

Keywords

References

  1. Altschul, S. F., Thomas, L. M., Alejandro, A. S., Jinghui, Z., Zheng, Z., Webb, M. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nuceic Acids Res. 25, 3389-3402. https://doi.org/10.1093/nar/25.17.3389
  2. Beall, H. D. and Winski, S. I. (2000) Mechanisms of action of quinone-containing alkylating agents. I: NQO1-directed drug development. Front. Biosci. 5, D639-648. https://doi.org/10.2741/Beall
  3. Belem, M. A. F. and Lee, B. H. (1998) Production of bioingredients from Kluyveromyces marxianus grown on whey: An alternative. Crit. Rev. Food Sci. Nutr. 38, 565-598. https://doi.org/10.1080/10408699891274318
  4. Chareonthiphakorn, N., Wititsuwannakul, D., Golan-Goldhirsh, A. and Wititsuwannakul, R. (2002) Purification and characterization of NAD(P)H quinone reductase from the latex of Hevea brasiliensis Mull.-Arg. (Euphorbiaceae). Phytochemistry 61, 123-128. https://doi.org/10.1016/S0031-9422(02)00233-9
  5. Chen, S., Wu. K. and Knox, R. (2000) Structure-function studies of DT-diaphorase (NQO1) and NRH: Quinone oxidoreductase (NQO2). Free Radic. Biol. Med. 29, 276-284. https://doi.org/10.1016/S0891-5849(00)00308-7
  6. Collin, P., Lomri, A. and Marie, P. J. (2001) Expression and activity of NAD(P)H:quinone oxidoreductase (NQO1) in human osteoblastic cells. Bone 28, 9-13. https://doi.org/10.1016/S8756-3282(00)00435-X
  7. De Haan, L. H., Boerboom, A. M., Rietjens, I. M., van Capelle, D., De Ruijter, A. J., Jaiswal, A. K. and Aarts, J. M. (2002) A physiological threshold for protection against menadione toxicity by human NAD(P)H:quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells. Biochem. Pharmacol. 64, 1597-1603. https://doi.org/10.1016/S0006-2952(02)01383-7
  8. Dinkova-Kostova, A. T. and Talalay, P. (2000) Persuasive evidence that quinone reductase type 1 (DT-diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic. Biol. Med. 29, 231-240 https://doi.org/10.1016/S0891-5849(00)00300-2
  9. Duffy, S., So, A. and Murphy, T. H. (1998) Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J. Neurochem. 71, 69-77.
  10. Faig, M., Bianchet, M. A., Talalay, P., Chen, S., Winski, S., Ross, D. and Amzel, L. M. (2000) Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Proc. Natl. Acad. Sci. USA 97, 3177-3182. https://doi.org/10.1073/pnas.050585797
  11. Faig, M., Bianchet. M. A., Winski, S., Hargreaves, R., Moody, C. J., Hudnott, A. R., Ross, D. and Amzel, L. M. (2001) Structure-based development of anticancer drugs: complexes of NAD(P)H:quinone oxidoreductase 1 with chemotherapeutic quinones. Structure 9, 659-667. https://doi.org/10.1016/S0969-2126(01)00636-0
  12. Friedrich, T., Abelmann, A., Brors, B., Guenebaut, V., Kintscher, L., Leonard, K., Rasmussen, T., Scheide, D., Schlitt, A., Schulte, U. and Weiss, H. (1998) Redox components and structure of the respiratory NADH:ubiquinone oxidoreductase (complex I). Biochim. Biophys. Acta 1365, 215-219. https://doi.org/10.1016/S0005-2728(98)00070-X
  13. Gellissen, G. and Hollenberg, C. P. (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis. Gene 190, 87-97. https://doi.org/10.1016/S0378-1119(97)00020-6
  14. Jaiswal, A. K. (1991) Human NAD(P)H:quinone oxidoreductase (NQO1) gene structure and induction by dioxin. Biochemistry 30, 10647-10653. https://doi.org/10.1021/bi00108a007
  15. Jaiswal, A. K. (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic. Biol. Med. 29, 254-262. https://doi.org/10.1016/S0891-5849(00)00306-3
  16. Kim, K. and Suk, H. (1999) Reduction of nitrosoarene by purified NAD(P)H-quinone oxidoreductase. J. Biochem. Mol. Biol. 32, 321-325.
  17. Kim, K. and Shin, H. -Y. (2000) Reduction of azobenzene by purified bovine liver quinone reductase. J. Biochem. Mol. Biol. 33, 321-325.
  18. Kim, K. and Shin, H. -Y. (2001) Bioreduction of N,N-dimethyl-pnitrosoaniline. J. Biochem. Mol. Biol. 34, 225-229.
  19. Landi, L., Fiorentini, D., Galli, M. C., Segura-Aguilar, J. and Beyer, R. E. (1997) DT-Diaphorase maintains the reduced state of ubiquinones in lipid vesicles thereby promoting their antioxidant function. Free Radic. Biol. Med. 22, 329-335. https://doi.org/10.1016/S0891-5849(96)00294-8
  20. Lewis, D. F. and Hlavica, P. (2000) Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Biochim. Biophys. Acta. 1460, 353-374. https://doi.org/10.1016/S0005-2728(00)00202-4
  21. Li, R., Bianchet, M. A., Talalay, P. and Amzel, L. M. (1995) The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reaction. Proc. Natl. Acad. Sci. USA 92, 8846-8850. https://doi.org/10.1073/pnas.92.19.8846
  22. Listemann, H., Schulz, K. D., Wasmuth, R., Begemann, F. and Meigel, W. (1998) Oesophagitis caused by Candida kefyr. Mycoses 41, 343-344. https://doi.org/10.1111/j.1439-0507.1998.tb00349.x
  23. Lundin, M., Nehlin, J. O. and Ronne, H. (1994) Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol. Cell. Biol. 14, 1979-1985.
  24. Monks, T. J., Hanzlik, R. P., Cohen, G. M. and Ross, D. (1992) Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 112, 2-16. https://doi.org/10.1016/0041-008X(92)90273-U
  25. Nakamura, M. and Yamazaki, I. (1972) One-electron transfer reactions in biochemical systems. VI. Changes in electron transfer mechanism of lipoamide dehydrogenase by modification of sulfhydryl groups. Biochim. Biophys. Acta 267, 249-257. https://doi.org/10.1016/0005-2728(72)90113-2
  26. Nakamura, M. and Yamazaki, I. (1973) One-electron transfer reactions in biochemical systems. VII. Changes in electron outlets in milk xanthine oxidase. Biochim. Biophys. Acta 327, 247-256. https://doi.org/10.1016/0005-2744(73)90407-5
  27. O’Brien, P. J. (1991) Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 80, 1-41. https://doi.org/10.1016/0009-2797(91)90029-7
  28. Pizzagalli, A., Piatti, S., Derossi, D., Gander, I., Plevani, P. and Lucchini, G. (1992) Positive cis-acting regulatory sequences mediate proper control of POL1 transcription in Saccharomyces cerevisiae. Curr. Genet. 21, 183-189. https://doi.org/10.1007/BF00336839
  29. Riley, R. J. and Workman, P. (1992) DT-diaphorase and cancer chemotherapy. Biochem. Pharmacol. 43, 1657-1669. https://doi.org/10.1016/0006-2952(92)90694-E
  30. Ross, D., Kepa, J. K., Winski, S. L., Beall, H. D., Anwar, A. and Siegel, D. (2000) NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Interact. 129, 77-97. https://doi.org/10.1016/S0009-2797(00)00199-X
  31. Siekstele, R., Bartkeviciute, D. and Sasnauskas, K. (1999) Cloning, targeted disruption and heterologous expression of the Kluyveromyces marxianus endopolygalacturonase gene (EPG1). Yeast 15, 311-322. https://doi.org/10.1002/(SICI)1097-0061(19990315)15:4<311::AID-YEA379>3.0.CO;2-9
  32. Sparla, F., Tedeschi, G., Pupillo, P. and Trost P. (1999) Cloning and heterologous expression of NAD(P)H:quinone reductase of Arabidopsis thaliana, a functional homologue of animal DTdiaphorase. FEBS Lett. 463, 382-386. https://doi.org/10.1016/S0014-5793(99)01625-7
  33. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  34. Thorn, J. M., Barton, J. D., Dixon, N. E., Ollis, D. L. and Edwards, K. J. (1995) Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH. J. Mol. Biol. 249, 785-799. https://doi.org/10.1006/jmbi.1995.0337
  35. Towbin, J., Stachelin, T. and Gordin, J. (1979) Electrophoresis transfer of proteins from polyacrylamide gel to nitrocellulose sheets procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  36. Williams, J. B., Lu, A. Y., Cameron, R. G. and Pickett, C. B. (1986) Rat liver NAD(P)H:quinone reductase. Construction of a quinone reductase cDNA clone and regulation of quinone reductase mRNA by 3-methylcholanthrene and in persistent hepatocyte nodules induced by chemical carcinogens. J. Biol. Chem. 261, 5524-5528.
  37. Wu, K., Knox, R., Sun, X. Z., Joseph, P., Jaiswal, A. K., Zhang, D., Deng, P. S. and Chen, S. (1997) Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase. Arch. Biochem. Biophys. 347, 221-228. https://doi.org/10.1006/abbi.1997.0344
  38. Yoshida, T. and Tsuda, H. (1995) Gene targeting of DT-diaphorase in mouse embryonic stem cells: establishment of null mutant and its mitomycin C resistance. Biochem. Biophys. Res. Commun. 214, 701-708. https://doi.org/10.1006/bbrc.1995.2342
  39. Zhao, Q., Yang, X. L., Holtzclaw, W. D. and Talalay, P. (1997) Unexpected genetic and structural relationships of a longforgotten flavoenzyme to NAD(P)H:quinone reductase (DTdiaphorase). Proc. Natl. Acad. Sci. USA 94, 1669-1674. https://doi.org/10.1073/pnas.94.5.1669

Cited by

  1. The yeast Kluyveromyces marxianus and its biotechnological potential vol.79, pp.3, 2008, https://doi.org/10.1007/s00253-008-1458-6