DOI QR코드

DOI QR Code

Regulation of the Gene Encoding Glutathione Synthetase from the Fission Yeast

  • Kim, Su-Jung (Division of Life Sciences, Kangwon National University) ;
  • Shin, Youn-Hee (Division of Life Sciences, Kangwon National University) ;
  • Kim, Kyung-Hoon (Division of Life Sciences, Kangwon National University) ;
  • Park, Eun-Hee (College of Pharmacy, Sookmyung Womens University) ;
  • Sa, Jae-Hoon (Department of Food and Drug Analysis, Kangwon Research Institute of Health and Environment) ;
  • Lim, Chang-Jin (Division of Life Sciences, Kangwon National University)
  • 투고 : 2002.11.09
  • 심사 : 2002.12.18
  • 발행 : 2003.05.31

초록

The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSB) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, $\gamma$-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multi copy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride ($10\;{\mu}M$) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal8 amino acid-coding region were fused into the promoteriess $\beta$-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of $\beta$-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of $\gamma$-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.

키워드

과제정보

연구 과제 주관 기관 : Korea Research Foundation

참고문헌

  1. AI-Lahham, A., Rohde, V., Heim, P., Leuchter, R., Veeck, J., Wunderlich, C., Wolf, K. and Zimmermann, M. (1999) Biosynthesis of phytochelatins in the fission yeast. Phytochelatin synthesis: a second role for the glutathione synthetase gene of Schizosaccharomyces pombe. Yeast 30, 385-395.
  2. Alton, M. (1985a) $\Upsilon$-Glutamylcysteine synthetase from erythrocytes. Methods Enzymol. 113, 390-392. https://doi.org/10.1016/S0076-6879(85)13051-X
  3. Alton, M. (1985b) Glutathione synthetase from rat kidney. Methods Enzymol. 113, 393-399. https://doi.org/10.1016/S0076-6879(85)13052-1
  4. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cai, J., Huang, Z. Z. and Lu, S. C. (1997) Differential regulation of gamma-glutarnylcysteine synthetase heavy and light subunit gene expression. Biochem. J. 326, 167-172.
  6. Cho, Y. W., Sa, J. H., Park, E. H. and Lim, C. J. (2001a) Expression of schizosacchammyces pombe Thioltransferase and Thioredoxin genes under limited growth conditions J. Biochem. Mol. BioI. 34, 395-401.
  7. Cho, Y. W., Park, E. H., Ahn, K. S., Kim, D and Lim, C. J. (2001b) Growth-dependent variations in antioxidant and redox enzyme activities of schizosaccharomyces pombe. J. Biochem. Mol. BioI. 34, 278-283.
  8. DeLeve, L. and Kaplowitz. N. (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmac. Ther. 52, 287-305. https://doi.org/10.1016/0163-7258(91)90029-L
  9. Dormer, U. H., Westwater, J., McLaren, N. F., Kent, N, A., Mellor. J. and Jamieson, D. J. (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J. Biol. Chem. 275, 32611-32616. https://doi.org/10.1074/jbc.M004167200
  10. Galloway, D. C., Blake, D. G. and McLellan, L. I. (1999) Regulation of $\Upsilon$-glutamylcysteine synthetase regulatory subunit (GLCLR) gene expression: identification of the major transcriptional start site in HT29 cells. Biochim. Biophys. Acta 1446, 47-56. https://doi.org/10.1016/S0167-4781(99)00073-1
  11. Grant, C. M., Maclver, F. H. and Dawes, I. W. (1997) Glutathione synthetase is dispensable for growth under both normal and oxidative stress condition in the yeast Saccharomyces cerevisiae due to an accumulation of the peptide garnma-glutamylcysteine. Mol. Biol. Cell 8, 1699-1707. https://doi.org/10.1091/mbc.8.9.1699
  12. Guarente, L. (1983) Yeast promoters and LacZ fusion designed to study the expression of cloned genes in yeast. Methods Enzymol. 101, 181-191. https://doi.org/10.1016/0076-6879(83)01013-7
  13. Holmgren, A. (1976) Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc. Natl. Acad. Sci. USA 73, 2275-2279. https://doi.org/10.1073/pnas.73.7.2275
  14. Huang, C., Chang, L., Anderson, M. E. and Meister, A. (1993) Catalytic and regulatory properties of the heavy subunit of rat kidney $\Upsilon$-glutamylcysteine synthetase. J. Biol. Chem. 268, 19675-19680.
  15. Huang, S.-S., Yang, H., Chen, C., Zeng, Z. and Lu, S. C. (2000) Inducers of $\Upsilon$-glutamylcysteine synthetase and their effects on glutathione synthetase expression. Biochim. Biophys. Acta 1493, 48-55. https://doi.org/10.1016/S0167-4781(00)00156-1
  16. Lu, S. C., Huang, Z.-Z., Yang, H. and Tsukamoto, H. (1999) Effect of thioacetamide on the hepatic expression of $\Upsilon$-glutamylcysteine synthetase subunits in the rat. Toxicol. Appl. Pharmacol. 159, 161-168. https://doi.org/10.1006/taap.1999.8729
  17. Meister, A. (1989) Metabolism and function of glutathione; in Glutathione: chemical, biochemical, and medical aspects, Dolphin, D., Poulson, R. and Auramovic. R. (eds.), pp. 367-474, John Wiley and Sons, New York. USA
  18. Misra, I. and Griffith, O. W. (1998) Expression and purification of human $\Upsilon$-glutamylcysteine synthetase. Protein Exp. Purif 13, 268-276. https://doi.org/10.1006/prep.1998.0897
  19. Moellering, D., McAndrew, J., Patel, R. P., Cornwell, T., Lincoln, T., Cao, X., Messina, J. L., Forman, H. J., Jo, H. and Darley-Usmar, V. M. (1998) Nitric oxide-dependent induction of glutathione synthesis through increased expression of $\Upsilon$-glutamylcysteine synthetase. Arch. Biochem. Biophys. 358, 74-82. https://doi.org/10.1006/abbi.1998.0854
  20. Moinova, H. R. and Mulcahy, R. T. (1998) An electrophile responsive element (EpRE) regulates $\beta$-naphthotlavone induction of the human $\Upsilon$-glutamylcysteine synthetase regulatory subunit gene. J. Biol. Chem. 273, 14683-14689. https://doi.org/10.1074/jbc.273.24.14683
  21. Morales, A. Garcia-Ruiz, C., Miranda, M., Mari, M., Colell, A., Ardite, E. and Fernandez-Checa, J. C. (1997) Tumor necrosis factor increases hepatocellular glutathione by transcriptional regulation of the heavy subunit chain of $\Upsilon$-glutamylcysteine synthetase. J. BioI. Chem. 272, 30371-30379.
  22. Mutoh, N., Nakagawa, C. W., Ando, S., Tanabe, K. and Hayashi, Y. (1991) Cloning and sequencing of the gene encoding the large subunit of glutathione synthetase of Schizvsaceharomyces pombe. Biochem. Biophys. Res. Commun. 181, 430-436. https://doi.org/10.1016/S0006-291X(05)81437-8
  23. Nguyen. A. N., Lee, A., Place, W. and Shiozaki, K. (2000) Multistep phosphorelay proteins transmit oxidative stress signals to fission yeast stress-activated protein kinase. Mol. Biol. Cell 11, 1169-1181. https://doi.org/10.1091/mbc.11.4.1169
  24. Reed. D. J. (l990) Glutathione: toxicological implications. Annu. Rev. Pharmacol. Toxicol. 30, 603-631. https://doi.org/10.1146/annurev.pa.30.040190.003131
  25. Reid, M. and Jahoor, F. (2001) Glutathione in disease. Curr. Opin. Clin. Nutr. Metab. Care 4, 65-71. https://doi.org/10.1097/00075197-200101000-00012
  26. Shukla, G. S., Chiu, J.-F. and Hart, B. A. (2000a) Enhanced expression of pulmonary $\Upsilon$-glutamylcysteine synthetase heavy subunit in rats exposed to cadmium aerosols. Toxicol. Appl. Pharmacol. 163, 249-259. https://doi.org/10.1006/taap.1999.8884
  27. Shukla, G. S., Chiu, J-F. and Hart, B. A. (2000b) Cadmium-induced elevations in the gene expression of the regulatory subunit of $\Upsilon$-glutamylcysteine synthetase in rat lung and alveolar epithelial cells. Toxicol. 151, 45-54. https://doi.org/10.1016/S0300-483X(00)00263-8
  28. Stover, S. K., Gushansky, G. A., Salmen, J. J. and Gardiner, C. S. (2000) Regulation of $\Upsilon$-glutamate-cysteine ligase expression by oxidative stress in the mouse preimplantation embryo. Toxicol. Appl. Pharmacol. 168, 153-159. https://doi.org/10.1006/taap.2000.9030
  29. Sugiyama, K., Izawa, S. and Inoue, Y. (2000a) The Yaplp-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J. BioI. Chem. 275, 15535-15540. https://doi.org/10.1074/jbc.275.20.15535
  30. Sugiyama, K.. Kawamura, A., Izawa, S. and Inoue, Y. (2000b) Role of glutathione in heat shock-induced cell death of Saccharomyces cerevisiae. Biochem. J. 352, 71-78. https://doi.org/10.1042/0264-6021:3520071
  31. Sun, Y. (1997) Induction of glutathione synthetase by 1,10- phenanthroline. FEBS Lett. 408, 16-20. https://doi.org/10.1016/S0014-5793(97)00380-3
  32. Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amount of total GSH and OSSG. Anal. Biochem. 27, 502-522. https://doi.org/10.1016/0003-2697(69)90064-5
  33. Th, Z. and Anders, M. W. (1998) Up-regulation of glutamate-cysteine ligase gene expression by butylated hydroxy toluene is mediated by transcription factor AP-1. Biochem. Biophys. Res. Commun. 244, 801-805. https://doi.org/10.1006/bbrc.1998.8345
  34. Wang, C.-L. and Oliver, D. J. (1997) Glutathione synthetase: Similarities of the proteins from Schizosaccharomyces pombe and Arabjdopsis thaliana. Biochem. J. 326, 563-566.

피인용 문헌

  1. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants vol.29, pp.4, 2005, https://doi.org/10.1016/j.femsre.2004.09.004
  2. A GSHS-like gene from Lycium chinense maybe regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis vol.34, pp.5, 2015, https://doi.org/10.1007/s00299-015-1750-8
  3. Metabolic Control Analysis: A Tool for Designing Strategies to Manipulate Metabolic Pathways vol.2008, 2008, https://doi.org/10.1155/2008/597913
  4. Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants vol.238, pp.4, 2006, https://doi.org/10.1016/j.jtbi.2005.07.003
  5. Disruption of redox homeostasis and induction of apoptosis by suppression of glutathione synthetase expression in a mammalian cell line vol.45, pp.9, 2011, https://doi.org/10.3109/10715762.2011.591392
  6. Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS vol.75, 2012, https://doi.org/10.1016/j.envexpbot.2011.09.001
  7. Gene expressions and enzyme analyses in theSchizosaccharomyces pombe Δpap1 transcription factor mutant exposed to Cd2+ vol.47, pp.1, 2007, https://doi.org/10.1002/jobm.200610239
  8. Effects of Copper Exposure on Expression of Glutathione-Related Genes in Acidithiobacillus ferrooxidans vol.62, pp.5, 2011, https://doi.org/10.1007/s00284-011-9881-9
  9. The Gene Encoding γ-Glutamyl Transpeptidase II in the Fission Yeast Is Regulated by Oxidative and Metabolic Stress vol.38, pp.5, 2005, https://doi.org/10.5483/BMBRep.2005.38.5.609