DOI QR코드

DOI QR Code

Styrylpyrone Derivative Induces Apoptosis through the Up-Regulation of Bax in the Human Breast Cancer Cell Line MCF-7

  • Chien, Alvin Lee Teck (School of Biosciences & Biotechnology, Faculty of Science & Technology, National University of Malaysia) ;
  • Pihie, Azimahtol Hawariah Lope (School of Biosciences & Biotechnology, Faculty of Science & Technology, National University of Malaysia)
  • Received : 2002.11.19
  • Accepted : 2002.12.19
  • Published : 2003.05.31

Abstract

In the fight against cancer, novel chemotherapeutic agents are constantly being sought to complement existing drugs. Various studies have presented evidence that the apoptosis that is induced by these anticancer agents is implicated in tumor regression, and Bcl-2 family genes play a part in apoptosis following treatment with various stimuli. Here, we present data that a styrylpyrone derivative (SPD) that is extracted from the plant Goniothalamus sp. showed cytotoxic effects on the human breast cancer cell line MCF-7. SPD significantly increased apoptosis in MCF-7 cells, as visualized by phase contrast microscopy and evaluated by the Tdt-mediated dUTP nick end-labeling assay and nuclear morphology. Western blotting and immunostaining revealed up-regulation of the proapoptotic Bax protein expression. SPD, however, did not affect the expression of the anti-apoptotic protein, Bcl-2. These results, therefore, suggest SPD as a potent cytotoxic agent on MCF-7 cells by inducing apoptosis through the modulation of Bax levels.

Keywords

References

  1. Adams, J. M. and Cory, S. (1998) The Bcl-2 protein family: Arbiters of cell survival. Science 281, 1322-1326. https://doi.org/10.1126/science.281.5381.1322
  2. Ahmad. F. B., Thkol, W. K., Omar, S. and Sharif, A. M. (1991) 5- Acetyl SPD, a Styryl dihydropyrone from Goniothalamus uvaroides. Phytochemistry 30, 2430-2431. https://doi.org/10.1016/0031-9422(91)83674-A
  3. Azimahtol Hawariah, L. P., Munawer, M. and Laily, D. (1994) Antifertiliti effect of SPD: A styrylpyrone isolated from Goniothalamus tapis miqo. Asia Pac. J. Pharmacol. 9, 273- 277.
  4. Azimahtol Hawariah, L. P., Stanslas, J. and Laily, D. (1998) Non-steroid receptor-mediated antiproliferative activity of styrylpyrone derivative in human breast cancer cell lines. Amicancer Res. 18, 1739-1744.
  5. Bargou, R. C., Daniel, P. T., Mapara, M. Y., Bommert, K., Wagener, C., Kallinich, B., Royer, H. D. and Dorken, B. (1995) Expression of the bcl-2 gene family in normal and malignant breast tissue: low Bax-$\alpha$ expression in tumor cells correlates with resistance to apoptosis. Int. J. Cancer. 60, 854-859. https://doi.org/10.1002/ijc.2910600622
  6. Bargou, R. C., Wagener, C., Bommert, K., Mapara, M. Y., Daniel, P. T., Arnold, W., Dietel, M., Guski, H.. Feller, A., Royer, H. D. and Dorken, B. (1996) Overexpression of the death- promoting gene Bax-$\alpha$ which is downregulated in breast cancer restores sensitivity to different apoptotic stimuli and reduces tumor growth in SCID mice. J. Clin. Invest. 97. 2651-2659. https://doi.org/10.1172/JCI118715
  7. Cohen. G. M. (1997) Caspases: the executioners of apoptosis. Biochem J. 326, 1-16.
  8. Constantini, P., Jacotot, E., Decaudin, D, and Kraemer, G. (2000) Mitochondrion as novel target of anticancer chemotherapy. J. Nat. Cancer Inst. 92, 1042-1053 https://doi.org/10.1093/jnci/92.13.1042
  9. Fan, S., Cherney, B., Reinhold, W., Rucker, K, and O'Connor, P. M. (1998) Disruption of p53 function in immortalized human cells does not affect survival or apoptosis after taxol or vincristine treatment. Clinical Cancer Research. 4, 1047-1054.
  10. Hannun, Y. A. (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89. 1845-1853.
  11. Hishikawa, K., Oemar, B. S., Tanner, F. C., Nakaki. T., Luscher, T. F. and Fujii, T. (1999) Connective tissue growth factor induces apoptosis in human breast cancer cell line MCF-7. J. Biol. Chem. 274, 37461-37466. https://doi.org/10.1074/jbc.274.52.37461
  12. Holmes, H. N., Sprague, I. S., Kowalak, J. P., Hughes, A. S., Johnson, P. H. and Mills, E. J. (2001) Malignant neoplasms: Breast Cancer; in The Professional Guide to Diseases, 7th ed., pp. 47-150, Springhouse publishing Co., Spring House, USA
  13. Jewers, K., Davis, J. B., Dougan, J., Machanda, A. H., Blunden, G., Kyi, A. and Wetchapian, S. (1972) SPD and its distribution in four Goniothalamus species. Phytochemistry 11, 2025-2030. https://doi.org/10.1016/S0031-9422(00)90168-7
  14. Kerr, J. F. R., Wyllie, A. H. and Currie, A. R. (1972) Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics. Br. J. Cancer. 26, 239-257. https://doi.org/10.1038/bjc.1972.33
  15. Krajewski, S., Blomqvist, C., Franssila, K., Krajewska, M., Wasenius, V. M., Niskanen, E., Nordling, S. and Reed. J. C. (1995) Reduced expression of pro-apoptotic gene Bax is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 55, 4471-4478.
  16. Lin, L. and Hwang, P. L. (1991) Antiproliferative effects of oxygenated sterols: Positive correlation with binding affinities for the anti-estrogen binding sites. Biochem. Biophy. Acta 1082, 177-184. https://doi.org/10.1016/0005-2760(91)90192-K
  17. Lowe, S. W. and Lin, A. W. 2000. Apoptosis in cancer. Carcinogenesis. 21, 485-495. https://doi.org/10.1093/carcin/21.3.485
  18. Majumdar, S. K. Valdellon. J. A. and Brown. K. A. (2001) In vitro investigations on the toxicity and cell death induced by tamoxifen on two non-breast cancer cell types. J. Biomed. Biotech. 1;3, 99-107.
  19. Meenakshii, N., Lee. A., Azimahtol. H. L. P. and Hasidah. S. (2000). Increased levels of apoptosis correlate with p53 protein accumulation in response to the styrylpyrone derivative (SPD) treatment of the Huggins Tumor. Malays. Appl. Biol. 29. 121-126.
  20. Oltvai. Z., Milliman, C. and Korsmeyer, S. J. (1993) Bcl-2 heterodimers in vivo with a conserved homolog, Bax. that accelerates programmed cell death. Cell 74. 609-619. https://doi.org/10.1016/0092-8674(93)90509-O
  21. Pastorino. J. G., Chen, S. T., Tafani, M., Snyder, J. W. and Farber, J. L. (1998) The Overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273. 7770-7775. https://doi.org/10.1074/jbc.273.13.7770
  22. Reed, J. C., Miyashita. T., Takayama, S., Wang. H. G., Sato, T., Krajewski. S., Aime-Sempe, C., Bodrug, S., Kitada, S. and Hanada, M. (1996) Bcl-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell Biochem. 60. 23-32. https://doi.org/10.1002/(SICI)1097-4644(19960101)60:1<23::AID-JCB5>3.0.CO;2-5
  23. Sakakura. C., Sweeney, E. A., Shirahama. T., Igarashi, Y., Hakomori, S., Nakatani. H., Tsujimoto, H., Imanishi, T., Ohgaki. M., Ohyama, T., Yamazaki, J., Hagiwara. A., Yamaguchi. T., Sawai, K. and Takahashi, T. (1996) Overexpression of Bax sensitizes human breast cancer MCF-7 cells to radiation-induced apoptosis. Int. J. Cancer 67, 101-105. https://doi.org/10.1002/(SICI)1097-0215(19960703)67:1<101::AID-IJC17>3.0.CO;2-H
  24. Srinivasan, A., Li, F., Wong, A., Kodandapani, L., Smidt, R Jr., Krebs. J. F., Fritz, L. C., Wu, J. C and Tomaselli. K. J. (1998) BcI-$x_{L}$ functions downstream of Caspase-8 to inhibit Fas-and tumor necrosis factor Receptor 1-induced Apoptosis of MCF-7 breast carcinoma cells. J. BioI. Chem. 273. 4523-4529. https://doi.org/10.1074/jbc.273.8.4523
  25. Symonds, H., Krall. L., Remington. L., Saenz-robles, M., Lowe, S., Jacks, T. and Van Dyke. T. (1994) P53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703-711. https://doi.org/10.1016/0092-8674(94)90534-7
  26. Teoh, P. L. and Azimahtol Hawariah, L. P. (1999) Effects of styrytpyrone derivative (SPD) on expression of Bcl-2 and Bax genes in human ovarian carcinoma cell line. Caov-3. Malays. Appl. BioI. 28, 107-111.
  27. Xiang, J., Chao, D. T. and Korsmeyer, S. J. (1996) BAX-induced death may not require interleukin 1$\beta$-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93, 14559-14563. https://doi.org/10.1073/pnas.93.25.14559
  28. Zha, H., Aime-Sempe, C., Takaaki. S. and Reed, J. C. (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J. Biol. Chem. 271, 7440-7444. https://doi.org/10.1074/jbc.271.13.7440

Cited by

  1. 4-Acetyl-12,13-Epoxyl-9-Trichothecene-3,15-Diol from Isaria japonica Mediates Apoptosis of Rat Bladder Carcinoma NBT-II Cells by Decreasing Anti-apoptotic Bcl-2 Expression and Increasing Pro-apoptotic Bax Expression vol.32, pp.03, 2004, https://doi.org/10.1142/S0192415X0400203X
  2. Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression vol.42, pp.4, 2009, https://doi.org/10.5483/BMBRep.2009.42.4.217
  3. Design, synthesis, in vitro cytotoxicity evaluation and structure–activity relationship of Goniothalamin analogs vol.36, pp.7, 2013, https://doi.org/10.1007/s12272-013-0099-1
  4. Vibrational spectroscopic studies and ab initio calculations of Goniothalamin, a natural product vol.71, pp.2, 2008, https://doi.org/10.1016/j.saa.2007.12.054
  5. 6-Bicycloaryl substituted (S)- and (R)-5,6-dihydro-2H-pyran-2-ones: Asymmetric synthesis, and anti-proliferative properties vol.17, pp.1, 2009, https://doi.org/10.1016/j.bmc.2008.10.069
  6. Emerging Anticancer Potentials of Goniothalamin and Its Molecular Mechanisms vol.2014, 2014, https://doi.org/10.1155/2014/536508
  7. Stereoselective total synthesis of (+)-cryptofolione and (+)-goniothalamin vol.22, pp.11, 2011, https://doi.org/10.1016/j.tetasy.2011.06.029
  8. Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells vol.14, pp.3, 2006, https://doi.org/10.1016/j.bmc.2005.08.036
  9. Total synthesis of (R)-(+)-goniothalamin and (R)-(+)-goniothalamin oxide: first application of the sulfoxide-modified Julia olefination in total synthesis vol.47, pp.33, 2006, https://doi.org/10.1016/j.tetlet.2006.06.054
  10. Goniothalamin-induced oxidative stress, DNA damage and apoptosis via caspase-2 independent and Bcl-2 independent pathways in Jurkat T-cells vol.193, pp.1, 2010, https://doi.org/10.1016/j.toxlet.2009.12.010