Genomics & Informatics Vol. 1(1) 25-31, September 2003

A Heuristic Algorithm to Find All Normalized Local

Alignments Above Threshold

Sangtae Kim', Jeong Seop Sim?, Heejin Park?,
Kunsoo Park®**, Hyunseok Park** and Jeong-Sun
Seo*s

'Department of Computer Science, Korea Military Academy,
Seoul, Korea

2Electronics and Telecommunications Research Institute,
Daejeon, Korea

*School of Computer Science and Engineering, Seoul National
University, Seoul, Korea

“Institute of Bicinformatics, Macrogen, Inc., Seoul, Korea
*Department of Computer Science, Ewha Womans University,
Seoul, Korea

ficheon Molecular Medicine Institute, Seoul National University,
Seoul, Korea

Abstract

Local alignment is an important task in molecular
biology to see if two sequences contain regions that
are similar. The most popular approach to local
alignment is the use of dynamic programming due to
Smith and Waterman, but the alignment reported by
the Smith-Waterman algorithm has some undesirable
properties. The recent approach to fix these problems
is to use the notion of normalized scores for local
alignments by Arslan, Egecioglu and Pevzner. In this
paper we consider the problem of finding all local
alignments whose normalized scores are above a
given threshold, and present a fast heuristic algo-
rithm. Our algorithm is 180-330 times faster than
Arslan et al.’s for sequences of length about 120 kbp
and about 40-50 times faster for sequences of length
about 30 kbp.

Keywords: local alignment, dynamic programming,

normalized score, fractional programming

Introduction

Sequence alignment is a fundamental task in molecular

* Corresponding author: E-mail kpark@theory.snu.ac.kr
Accepted 26 March 2003

biology to see if two sequences are related. The local
alignment problem for two sequences is to find a pair of
similar regions, one from each sequence. In many
biological applications local alignment is more useful than
global alignment because two sequences may not be
similar as a whole, but they can contain small regions that
are very similar.

A most popular approach to local alignment is the use of
dynamic programming due to Smith and Waterman (Smith
and Waterman, 1981; Waterman et al., 1995). The Smith-
Waterman algorithm finds a pair of regions whose
alignment score is the highest (which is called the optimal
local alignment). However, the alignment reported by the
Smith-Waterman algorithm has some undesirable
properties. The alignment may include regions whose
similarity is very poor (Arslan et al., 2001; Zhang et al.,
1999). Also, the Smith-Waterman algorithm does not
consider the lengths of local alignments in computing
scores, and therefore a biologically important but short
alignment may not be detected(Arslan and Pevzner et al.,
2001).

There have been several approaches to fix the
problems of the Smith-Waterman algorithm (Goad and
Kanehisa, 1982; Sellers, 1984; Zhang et al., 1998; Zhang
et al.,, 1999; Arslan and Pevzner et al., 2001). For example,
Zhang et al. (Zhang et al,, 1998; Zhang and Miller et al.,
1999) proposed an approach based on the notion of X-
drop, a region that scores below -X for some fixed X>0.
They consider only alignments that contain no X-drop. A
more recent approach to fix the problems is the use of
normalized scores for, local alignments (Marzal and Vidal
1993; Arslan and O. Egeciogiu (1999); Arslan et al.,
2001). Arslan et al. (2001) used fractional programming to
obtain the optimal normalized local alignment of two
sequences. They also extended their solution to find all
local alignments whaose normalized scores are larger than
a given threshold by running their solution repeatedly after
masking those alignments that are already found.

In this paper we consider the problem of finding all local
alignments whose normalized scores are above a given
threshold. A local alignment whose normalized score is
above a threshold will be called a TNL alignment. Since
small regions are reported in the local alignment problem,
finding all of TNL alignments can be more appropriate than
just finding a single (optimal) local alignment in applications
such as gene prediction (Gusfield, 1997). We present a
fast algorithm for the problem of finding all the TNL

26 Genomics & Informatics Vol. 1(1) 25-31, September 2003

alignments. Our algorithm is based on fractional
programming and the banded Smith-Waterman algorithm.
The fractional programming approach uses the Smith-
Waterman algorithm repeatedly to obtain one local
alignment. Arslan et al. (Arslan et al., 2001) use this
solution repeatedly to find all the TNL alignments. Hence,
Arslan et al.’ s algorithm makes a double repetition of the
Smith-Waterman algorithm, which makes it very slow in
practice. Our algorithm first makes a careful selection of
bands based on several parameters so that the selected
bands can only contain TNL alignments with high
probability. Then it runs the Smith-Waterman algorithm on
the selected bands in such a way that the number of
applications of the Smith-Waterman algorithm on each
band is much smaller than that of Arslan et al.’ s.

Experiments show that our algorithm is about 180-330
times faster than Arslan et al.” s for the data set of human
chromosome X cosmids Qc8D3 (GenBank Acc. No.
AF030876 (113 kbp)) and mouse chromosome X clone
BAC B22804 (GenBank Acc. No. AF121351 (123 kbp))
and it is about 40-50 times faster for the data set of human
(GenBank Acc. No. L10347 (31 kbp)) and mouse
(GenBank Acc. No. M65161 (32.4 kbp)) pro-alphal type
the benefit of Il collagen, while finding all TNL alignments.
In addition to extremely fast speed, our algorithm can
change the parameters for selecting bands to adjust the
time and accuracy of our algorithm.

Preliminaries

A string or a sequence is concatenations of zero or more
characters from an alphabet X'. A space is denoted by 4
¢ 2'; we regard 4 as a character for convenience. The
length of a string a is denoted by |a|. Let a: denote ith
character of a string a and qfi, j) denote a substring aai+1
---g; of a. When a sequence « is a substring of a sequence
a, we denote it by a{a. Given two strings a=a:a:--a» and
b=bibz---bs, an alignment of a and b is a* =ai*e" --a™ and
b* =b"b"---b* constructed by inserting zero or more 4's
into a and b so that each a* maps to b* for 1<i<I. There
are three kinds of mappings in a* and b* according to the
characters of and a* and b*.

- match : a*=b*+ 4,

- mismatch : (a* #b*) and (a*,b*+ 4),

- insertion or deletion (indel for short) : either a.* or b*is 4.
Note that we do not allow the case of a*=b*=4.

If there exists an alignment of ¢ and » whose number of
matches, mismatches and indels are xyand z, respectively,
then we call the triplet (x, y, z) an alignment vector of a and
b. We define the alignment score of an alignment * and »*
with alignment vector (x, y, z) by score(x, y, z) =x-0y -4z
that is, we assume that a match score is 1, a mismatch

penalty is & and an indel penalty is «. We define the
similarity of two sequences a and b, denoted by S(g, b), to
be the highest alignment score of all possible alignments of
a and b.

Local Alignments

Given two sequences a and b, a local alignment of a and b
is an alignment of two strings @ and £ such {a and b,
and the optimal local alignment of a and b is the local
alignment of a and b that has the highest similarity among
all local alignments of a and b. We denote the similarity of
an optimal local alignment by SL(a, b).

A most well-known algorithm to find an optimal local
alignment was given by Smith and Waterman, which is
known as the Smith-Waterman algorithm (SW algorithm
for short) (Smith and Waterman, 1981; Waterman, 1995).
Given two sequences a{lal=m) and b(lbl=n), the SW
algorithm computes SL(a, b} using a dynamic programming
table (called the H table) of size (m+1)(n-+1). Let H,; for 0<i
<m and 0<j<n denote SL{a(1, i), b(1, j)). Then, H, can be
computed by the following recurrence:

H,=H, =0 (0<i<m,0<j<n)
qu = max {O,Hi-l,j-l + s5(a;, b;)’I_Iivj-l_/‘;I_Ii-l,j—/‘}

1 ifa;,=b;
S(ai’bj)={ ' !

-6 ifa;*b;

Among all H;; for 0<i<m and 0 <j <n, the highest value is
SL{a, b), and the SW algorithm takes O(mn) time to
compute it.

Normalized Local Alignments

Since the SW algorithm does not consider the lengths of
local alignments, the solution of the SW algorithm may
include some regions with very low similarity. Moreover, a
biologically important short alignment may not be detected
(Arslan and Pevzner et al., 2001; Alexandrov and
Solovyev, 1998; Zhang and Miller et al,, 1999). To handle
these problems, the notion of normalization for similarity
has been introduced (Arslan O. Egecioglu (1999), Arslan et
al., 2001; Egdecioglu and Ibel, 1996; Marzal and Vidal,
1993; Alexandrov and Solovyev, 1998).

Given two sequences a and b, we define the normalized
similarity of a and b by, S(a, b)/(lal+1bl+L), where L is a
constant. From this definition we can define a normalized
alignment score for local alignment: the normalized
alignment score of an alignment a* and b* with alignment
\ggrce:}xoyr (x, v, z) is defined by nscore (x, y, 7z} =
m (Arslan and Pevzner et al, 2001). The opti-
mal normalized local alignment of a and b is the local
alignment of @ and b that has the highest normalized
alignment score.

A Heuristic Algorithm to Find All Normalized Local Alignments Above Threshold 27

Here we consider two problems related to normalized
local alignment: one is to find the optimal normalized local
alignment of « and b; the other is to find all normalized local
alignments of « and 5 above some threshold Ts.

Optimal Normalized Local Alignment

Given two sequences a and b, let AV{a, b) be the set of all
possible alignment vectors of a{a that 3{b. The problem of
finding an optimal local alignment (LA problem for short)
and that of finding an optimal normalized local alignment
(NLA problem for short) are defined as follows:

LA problem : Find (x, v, z) & AV(q, b) such that score(x, y,

2) is greatest in AV(a, b).
NLA problem : Find (x, y, z) & AV(a, b) such that
nscore(x, y, z) is greatest in AV(q, b).

Note that we can find the score of an optimal local
alignment using the SW algorithm but with a simple
modification of storing the starting position of each score,
we can also find the location of the optimal local alignment.
For a given A, we define the parametric local alignment
problem as follows:

LA(A) problem : For all (x, y,) EAV(a, b), find the

maximal value of x-&' y - xz-A(2x+2y+z+L)
A parametric local alignment problem can be converted
into a local alignment problem because the optimal solution
of LA(A) involves solving a local alignment problem and
performing some simple computations (Arslan and
Pevzner etal, 2001).
We can use Dinkelbach’ s algorithm to solve the NLA
problem. Dinkelbach developed a general algorithm that
uses fractional programming (Dinkelbach, 1967). The
optimal solution to NLA can be obtained via a series of
optimal solutions of LA(4) for different A" s using the
following result:

A is the optimal solution for NLA if and only if LA(A)=0.
Dinkelbach’s algorithm (Dinkelbach, 1967) (See Algorithm
1) starts with an initial value for A and repeatedly solves
LA(A). Since the LA(A) problem can be converted into an
LA problem, it solves the LA problem and obtains an
optimal alignment vector (x, y, z). Next, it sets A= nscore(x, ,
z) and repeats this process until A is not changed any more.
The convergence to the optimal solution of the NLA problem is
guaranteed (Arslan et al., 2001).

All Normalized Local Alignments Above a
Threshold

In some biological applications, we need to find all focal
alignments whose normalized alignment scores are above a
given threshold. Formally, we define this problem as follows:
TNLA problem : For given a threshold value Ts, find all (x,
y, 7) & AV(a, b) such that nscore(x, y, z)
>Ts.

Algorithm 1 Dinkellsachs algorithm
1. Choose an arbitrary alignment vector (x y2) € AV(a, b)

2 Setar = VKL
2x+2y+z+L
3. Repeat
4. A= A*
5. Convert the problem into the LA(A) problem and obtain (x yz)

pat = X OYHZ
242y +z+L

7. Until A= A*
8. Return A*

A local alignment whose normalized alignment score is
above a given threshold will be called a TNL alignment.
Therefore, the TNLA problem is to find all the TNL
alignments.

For the TNLA problem, Arslan et al. (2001) first solve the
NLA problem and then mask the solution to repeatedly find
the next optimal solution of the NLA problem.

Banded Smith-Waterman Algorithm

In general, it is highly likely that an optimal local alignment
has a long part of exact matches in it. The banded Smith-
Waterman algorithm uses this phenomenon and finds a
solution very quickly for the LA problem with high
probability (Setubal and Meidanis, 1997). Many biological
systems such as Phrap (Green), STROLL (Chen and
Skiena, 1997) and FASTA (Lipman and Pearson, 1998)
are based on this algorithm.

The banded SW algorithm consists of the following two
steps:

1. Determine bands
Find all the bands that can have local alignments with
high similarity. Usually, a band is defined by the
information of exact matches and if two or more bands
overlap, they are merged into one band.

2. Run the SW algorithm
Run the SW algorithm on the defined bands. The entries
of H:, outside the bands are assumed 0 and they are not
computed.

Methods

We first present an algorithm for finding an optimally
normalized local alignment (the NLA problem) and then
present algorithms for finding all local alignments whose
normalized alignment scores are above a given threshold
Ts (the TNLA problem). Our algorithm for the NLA problem
is used as a subroutine in our algorithms for the TNLA

28 Genomics & Informatics Vol. 1(1) 25-31, September 2003

problem.

Optimal Normalized Local Alignment

We present an algorithm for the NLA problem of two
strings a(lal=m) and b(1bl=n). Our algorithm is based on
Dinkelbach’ s algorithm which is a general algorithm to
solve the NLA problem. We use the banded SW algorithm
to solve the LA problem in Dinkelbach's algorithm. Since
we already described Dinkelbach’ s algorithm and the
banded SW algorithm, we concentrate on describing how
to determine bands.

We first introduce some definitions before we describe
how to determine the bands. Consider the H table
generated by the SW algorithm in computing SL(a, b). The
ith-diagonal (or diagonal i), 0<i<m(resp. -n<i<-1),
represents a diagonal that passes through (0, i) (resp. (-,
0)) element of the H table. A band is a set of diagonals and
the width of a band is the number of diagonals in the band.
A band i of width k is a set of diagonals from i through i+-
1. We say that an exact match (i, j) occurs in diagonal & if
afi, j)= b(i+kj+k). Exact match (i, j) is maximal if a-1 #bi+-:
and a:+: #by+a. The length of exact match (i, j) is j-i+1.

We show how to determine the bands with given
parameters T, w, and 7. The parameter T:is a threshold on
the length of an exact match, w is the width of a band, and
T, is a threshold on the weight of a band. Determining the
bands is composed of the following four steps;

1. Find all maximal exact matches longer than T in each
diagonal. We first generate all suffixes of a and 5 and
sort them in lexicographic order. Once all the suffixes of
a-and b are sorted, it is easy 1o find all maximal exact
matches longer than T.

2. Compute the weight of each diagonal, where the weight
of a diagonal is the sum of the lengths of all maximal
exact matches longer than T: in the diagonal.

3. Select every band b of width w whose weight is above
Ts, where the weight of a band is the sum of the weights
of all diagonals in the band.

4. Merge two bands Bi={d, ‘-, d} and B:={d, ---, dj} into a
single band B={min(d, d:), ---, max(d, d)}, if they overlap
(ie., i<k<j or i<I<j). Repeat merging until no two
bands overlap. (Fig. 1)

Parameters T, w, and T, should be chosen appropriately
so that an optimal normalized local alignment does not lie
out of the bands. In Section 4, we suggest appropriate
values for T;, w, and T through experiments.

Our algorithm for the NLA problem first determines the
bands as explained above and then runs the SW algorithm
on the selected bands. The speedup achieved by our
algorithm over Arslan et al.’ s is due to the following two
improvements.

- We uses the banded SW algorithm to solve the LA

B3(discarded band)

N
~

‘Exactmatch B B

Merged band
Fig. 1. Merging and discarding bands.

problem of Dinkelbach’ s aigorithm while Arslan et al.
used the SW algorithm. Thus, the speedup achieved by
the banded SW algorithm over the SW algorithm is
reflected in our algorithm.

We perform the step of determining bands in the
banded SW algorithm only once while we perform the
banded SW algorithm several times in Dinkelbach' s
algorithm. Since the bands are the sets of diagonals
where long exact matches occur, the bands in all
repetitions of the banded SW algorithm are the same.
Hence, we need to determine the bands only once.

All Normalized Local Alignments Above a
Threshold

We now present algorithms for the TNLA problem of two
strings a and ». We first give a simple algorithm that finds
all normalized local alignments whose alignment scores
are above a given threshold T. (the TNL alignments) in
such a way that a TNL alignment of larger alignment score
is found earlier than a TNL alignment of smaller alignment
score. Arslan et al. (Arslan et al.,, 2001) also found the TNL
alignments in the same decreasing order. Then, we
improve the simple algorithm by finding the TNL
alignments in a somewhat different order.

The simple algorithm consists of two steps. Step 1 is
performed once and step 2 is repeated until all TNL
alignments are found.

Step 1. Find all maximal exact matches of @ and b longer
than T: and determine the bands as we did in
Section 3.1.

Step 2. Find an optimal normalized local alignment of a and
b using the algorithm presented in Section 3.1. If
the alignment score of the found alignment is
above T., mask the found alignment and repeat

A Heuristic Algorithm to Find All Normalized Local Alignments Above Threshold 29

step 2. Otherwise, terminate.

The simple algorithm finds the normalized local
alignments in decreasing order of alignment scores.
Hence, it is guaranteed that every TNL alignment has been
found when the simple algorithm terminates.

We consider the speedup achieved by the simple
algorithm over Arslan et al.’ s algorithm. Let p dencte the
number of the TNL alignments. Step 2 iterates just p times.
Since the time for masking an alignment is negligible and
our algorithm performs step 1 only once, our simple
algorithm for the TNLA problem takes about p times our
algorithm for the NLA problem. Also, Arslan et al.’ s
algorithm for the TNLA problem takes p times their
algorithm for the NLA problem. Therefore, the speedup
achieved by our simple algorithm over Arslan et al.’ s
algorithm for the TNLA problem is the speedup achieved
by our algorithm over Arslan et al.’s algorithm for the NLA
problem.

As long as all the TNL alignments are guaranteed to be
found, the order of the alignments that are found may not
be important. If we find the TNL alignments in a different
order, we can find them more efficiently. The improved
algorithm is as follows.

Step 1. Find all maximal exact matches of ¢ and b longer
than T: and determine the bands as in Section 3.1.
Let B, B, ---, B: denote the bands.

Step 2. For each band B: for 1< <k, perform the following.
Find an optimal normalized local alignment within
Bi by running the SW algorithm only in B. If the
normalized alignment score of the found alignment
is above T, mask the found alignment and repeat.
Otherwise, we are done with B.

it is easy to see that aff the TNL alignments have been
found when the improved algorithm terminates.

We consider the speedup achieved by the improved
algorithm over the simple algorithm. Let C, 1 <i <k, denote
the number of the TNL alignments included in band B: and
W: the width of B. In the improved algorithm, band B: is
accessed when we find each of C. TNL alignments while in
the simple algorithm, all bands B, B, ---, B« are accessed
when we find each of Ci+C:+---+C: TNL alignments. Note
that the improved algorithm accesses B: at least once even
if there is no TNL alignment in it. Hence, the speedup
achieved by the improved algorithm over the simple
algorithm is

(Wi+Wa--+Wi) (C1+Ca+---Ck) 1
WiXmax(C1,)+W2 X max(C2, 1)+ +Wx X max(Cx, 1) ()

Remark : We can consider affine gaps in both problems of
NLA and TNLA. The affine gap penalty for a gap is defined
as y+uk, where 7 is a gap open penalty, ¢ is an indel

penalty and & is the length of a gap. We can include the
affine gap penalty in our algorithms for NLA and TNLA by a
simple modification of the recurrence of the SW algorithm
(Gotoh 1982; Waterman 1995).

Results and Discussion

We implemented and compared two algorithms for the NLA
problem: Arslan et al. s and ours, and three algorithms for
the TNLA problem: Arslan et al’.s algorithm, our simple
algorithm and our improved algorithm. In all our
implementations, we considered the affine gaps.

We have chosen two data sets to test the efficiency of
the algorithms: (i) human chromosome X cosmids Qc8D3
(GenBank Acc. No. AF030876 (113 kbp)) and mouse
chromosome X clone BAC B22804 (GenBank Acc. No.
AF121351 (123 kbp)) and (i} human (GenBank Acc. No.
110347 (31kbp)) and mouse (GenBank Acc. No. M65161
(32.4 kbp)) pro-alphal type Il collagen. Since the repeats
which are biologically uninteresting regions may have high
normalized scores, we masked the repeats by
RepeatMasker (http:/ repeatmasker. genome.washington.
edu/) before running all the algorithms.

We implemented all the algorithms in C++ language.
The programs were run on Pentium Il 866MHz x 2 work-
station with 768MB main memory. The parameter values
used in our algorithms are as follows: L=2000 (a constant
in defining normalized scores), 6=1 (mismatch penalty), ¥
=6 (gap open penalty), #=0.2 (indel penalty), and 7.=0.035
{threshold of normalized score).

NLA Problem

Our algorithm finds the same optimal normalized local
alignment as Arslan et al.’s algorithm does even when
w=100 for both data sets. As shown in Table 1, our
algorithm is about 20 times faster than Arslan et al.’ s for
both data sets when w>150 and 7:<150.

We have experimented with various values of the three
parameters T;, T> and w, and here we show nine cases for
three values of 7: and three values of w and we have
chosen an appropriate value of T; for each T.. Note that we
decrease T as T: increases. Otherwise, good bands may
be discarded since longer exact matches are fewer than
shorter exact matches.

TNLA Problem

Table 2 and Table 3 show execution times of the three
algorithms for the TNLA problem. We first analyze the
ratios of execution times of the three algorithms. Assume
that the widths of all bands are the same and the TNL
alignments are equally distributed in the bands which
include TNL alignments. Let k be the number of the bands

30 Genomics & Informatics Vol. 1(1) 25-31, September 2003

Table 1. Execution time (in seconds) for the NLA problem (first data set / second data set).

, . Our algorithm
Arslan et al.’ s algorithm
T=12, T:=80 T=15, T:=50 T=20, T:=30

w=100 1365/ 207 468/187 398/170

59585/ 4340 w=150 2108/230 615/207 513/198

w=200 2827 /283 746/ 225 621/218

Table 2. Execution time (in seconds) for the TNLA problem for the first data set.
Arslan Simple algorithm Improved algorithm

etal. s T=12, T=15, T=20, T=12, T=15, T=20,
algorithm 7i=80 7:=50 Ti=30 T:=80 Ti=50 7:=30
w=100 14345 4876 3915 1923 1351 1259
631603 w=150 25249 7473 5332 2705 1895 1581
w=200 35172 8879 6921 3492 2209 1996

Table 3. Execution time (in seconds) for the TNLA problem for the second data set.

Arslan Simple algorithm Improved algorithm
etal's T=12, T=15, T=20, =12, T=15, T=20,
algorithm T1=80 =50 71=30 =80 T1=50 7+=30
w=100 2390 2224 1964 970 638 491
67558 w=150 2643 2396 2384 1441 1333 1114
w=200 3263 2592 2508 1578 1443 1391

that our algorithms determine, and &’ be the number of the
bands which include TNL alignments. Also, let ¢ be the
average number of TNL alignments in a band. Then, the
equation (1) can be rewritten as follows:

kk't

k't+k-k'
Hence, our improved algorithm is faster than Arslan et al’s
by the following factor:

kk't

ik S

where § is the speedup of our simple algorithm over Arslan
etals.

Consider the experimentaf results for the first data set in
Table 2. When w=150, T=15 and T.=50, we have §=80
and k=5, k’=5, t=1/3 (k, k¥’ are not shown in Table 2 since
the number of TNL alignments is 15 as shown in Table 4).
By the above formula, our improved algorithm should be
approximately 400 times faster than Arslan et al.’s and the
result (631603/1895=330) is similar to our expectation.
(Note that the time of the improved algorithm can vary
depending on the value of 7: in each case.) For another
example, when w=200, T=12 and T.=80, we get S=18,
k=24, k’=5 and 1=1/3. Thus, our improved algorithm should
be about 200 times faster than Arslan et al.’ s and the result
(631603/3492 =180) shows an approximately same ratio.

For the second data set, our algorithm is about 40 times
faster than Arslan et al." s when w=150, T=15 and T:=50,
and about 50 times faster when w=200, T:=12 and T:=80.

Table 4 shows the accuracy of our algorithms. For
example, when w=100, T=20 and 7.=30 in Table 4, our
algorithms find 12 out of 15 TNL alignments. But as w
increases and T: decreases, our algorithms are getting
more accurate. Note that our algorithms find all TNL
alignments when w>150 and 7:<15.

In addition to extremely fast speeds, another advantage
of our algorithms is that we can change the parameters w,
Trand T: to adjust the time and accuracy of our algorithms.

Acknowledgments

This work was supported by the Brain Korea 21 Project,
the IMT 2000 Project AB02, the MOST grant M6-0203-00-
0039, and the RIACT at Seoul National University.

References

Alexandrov, N.N., and Solovyev, V.V., (1998). Statistical
significance of ungapped alignments, Pacific Symposium on
Biocomputing 98, 463-472.

Arslan, AN., and Edecioglu, O.(1999), An efficient uniform-cost
normalized edit distance algorithm, Symposium on String
Processing and Information Retrieval 99, IEEE Computer

A Heuristic Algorithm to Find All Normalized Local Alignments Above Threshold 31

Table 4. The number of TNL alignments that are found (first data set / second data set).

Arslan et al.’ s algorithm

Simple/Improved algorithm

17=12, T.=80 T=15, T:=50 17=20, T:=30
w=100 13/12 13/12 12/11
15/12 w=150 15/12 15/12 13/12
w=200 15/12 15/12 14/12
Society, 8-15. Gusfield, D. (1997). Algorithms on Strings, Trees, and

Arslan, AN., and Egdecioglu, O.(2003), Efficient algorithms for
normalized edit distances, Journal of Discrete Algorithms,
Hermes Science Publications, in press.

Arslan, AN., Edeciodlu, Q., and Pevzner, P. (2001). A new
approach to sequence comparison: normalized sequence
alignment, Bioinformatics 17, 327-337.

Chen, T., and Skiena, S.S., (1997). Trie-based data structures for
sequence assembly, Combinatorial Pattern Matching 97, 206-
223.

Dinkelbach, W., (1967). On nonlinear fractional programming,
Management Science 13, 492-498.

Edecioglu, O., and Ibel, M. (1996). Parallel algorithms for fast
computation of normalized edit distances, IEEE Symposium on
Parallel and Distributed Processing 96, 496-503.

Gotoh, 0., (1982). improved algorithm for matching biological
sequences, Journal of Molecular Biology 162, 705-708.

Goad, W.B., and Kanehisa, M.I. (1982). Pattern recognition in
nucleic acid sequences. i. a general method for finding local
homologies and symmetries, Nucleic Acids Research 10, 247-
263.

Green, P., Documentation for phrap, Genome Center, University
of Washington, http://www.phrap.org/ phrap.docs/phrap.htr,

Sequences, Cambridge University Press.

Lipman, D., and Pearson, W. (1988) Improved tools for biological
sequence comparison, Proceedings of National Academy of
Science 85, 2444-2448.

Marzal, A., and Vidal, E. (1993) Computation of normalized edit
distances and applications, /IEEE Transactions on Pattern
Analysis and Machine Intelligence 15, 926-932.

Sellers, P.H. (1984). Pattern recognition in genetic sequences by
mismatch density, Bulletin of Mathematical Biology 46, 501-
504.

Setubal, J., and Meidanis, J., (1997). Introduction to com-
putational molecular biology, PWS Publishing Company.

Smith, T.F., and Waterman, M.S. (1981). Identification of
common molecular subsequences, Journal of Molecular
Biology 147, 195-197.

Waterman, M.S., (1995). Introduction to Computational Biology,
Chapman & Hall, London

Zhang, Z., Berman, P., and Miller, W. (1998). Alignments without
low scoring regions, Journal of Computational Biology 5, 197-
200.

Zhang, Z., Berman, P., Wiehe, T., and Miller, W. (1999). Post-
processing long pairwise alignments, Bioinformatics 15, 1012-
1019.

