Regulatory Mechanism of Radiation-induced Cancer Cell Death by the Change of Cell Cycle

세포주기 변화에 타른 방사선 유도 암세포 사망의 조절기전

  • Jeong Soo-Jin (Department of Radiation Oncology Dong-A University Hospital) ;
  • Jeong Min-Ho (Department of Radiation Oncology Dong-A University Hospital) ;
  • Jang Ji-Yeon (Department of Radiation Oncology Dong-A University Hospital) ;
  • Jo Wol-Soon (Department of Radiation Oncology Dong-A University Hospital) ;
  • Nam Byung-Hyouk (Department of Radiation Oncology Dong-A University Hospital) ;
  • Jeong Min-Za (Department of Radiation Oncology Dong-A University Hospital) ;
  • Lim Young-Jin (Department of Radiation Oncology Dong-A University Hospital) ;
  • Jang Byung Gon (Department of Radiation Oncology Dong-A University Hospital) ;
  • Youn Seon-Min (Department of Radiation Oncology Dong-A University Hospital) ;
  • Lee Hyung Sik (Department of Radiation Oncology Dong-A University Hospital) ;
  • Hur Won Joo (Department of Radiation Oncology Dong-A University Hospital) ;
  • Yang Kwang Mo (Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences)
  • 정수진 (동아대학교 의과대학 방사선종양학과) ;
  • 정민호 (동아대학교 의과대학 방사선종양학과) ;
  • 장지연 (동아대학교 의과대학 방사선종양학과) ;
  • 조월순 (동아대학교 의과대학 방사선종양학과) ;
  • 남병혁 (동아대학교 의과대학 방사선종양학과) ;
  • 정민자 (동아대학교 의과대학 방사선종양학과) ;
  • 임영진 (동아대학교 의과대학 방사선종양학과) ;
  • 장병곤 (동아대학교 의과대학 방사선종양학과) ;
  • 윤선민 (동아대학교 의과대학 방사선종양학과) ;
  • 이헝식 (동아대학교 의과대학 방사선종양학과) ;
  • 허원주 (동아대학교 의과대학 방사선종양학과) ;
  • 양광모 (원자력의학원 방사선종양학과)
  • Published : 2003.12.01

Abstract

Purpose : In our Previous study, we have shown the main cel1 death pattern Induced by irradiation or protein tyrosine kinase (PTK) inhibitors in K562 human myeiogenous leukemic cell line. Death of the cells treated with irradiation alone was characterized by mitotic catastrophe and typical radiation-induced apoptosis was accelerated by herblmycin A (HMA). Both types of cell death were inhibited by genistein. In this study, we investigated the effects of HMA and genistein on cell cycle regulation and its correlation with the alterations of radiation-induced cell death. Materials and Methods: K562 cells In exponential growth phase were used for this study. The cells were Irradiated with 10 Gy using 6 MeV Linac (200-300 cGy/min). Immediately after irradiation, cells were treated with 250 nM of HMA or 25 $\mu$N of genistein. The distributions of cell cycle, the expressions of cell cycle-related protein, the activities of cyclin-dependent kinase, and the yield of senescence and differentiation were analyzed. Results: X-irradiated cells were arrested In the G2 phase of the cell cycle but unlike the p53-positive cells, they were not able to sustain the cell cycle arrest. An accumulation of cells in G2 phase of first ceil-cycle post-treatment and an increase of cyclin Bl were correlated with spontaneous, premature, chromosome condensation and mitotic catastrophe. HMA induced rapid G2 checkpoint abrogation and concomitant p53-independent Gl accumulation. HMA-induced cell cycle modifications correlated with the increase of CDK2 kinase activity, the decrease of the expressions of cyclins I and A and of CDK2 kinase activity, and the enhancement of radiation-induced apoptosis. Genistein maintained cells that were arrested in the G2-phase, decreased the expressions of cyclin Bl and cdc25c and cdc25C kinase activity, increased the expression of pl6, and sustained senescence and megakaryocytic differentiation. Conclusion: The effects of HMA and genistein on the radiation-induced cell death of KS62 cells were closely related to the cell cycle regulatory activities. In this study, we present a unique and reproducible model in which for investigating the mechanisms of various, radiation-induced, cancer cell death patterns. Further evaluation by using this model will provide a potent target for a new strategy of radiotherapy.

목적: K562 세포의 방사선에 의한 세포 사망은 mitotic catastrophe 현상이 위주로 나타나지만 herbimycin A (HMA)에 의하여 apoptosis 반응이 촉진되는 반면 genisteln에 의하여 두 가지 형태의 세포사망이 모두 억제된다. 본 연구에서는 HMA와 genistein에 의한 K562세포의 방사선 유도 세포주기 조절 변화와 세포 사망 양상의 연관성을 조사하였다. 대상 및 방법: 지수증식기의 KS62 세포에 6 MV 선형가속기(Clinac 1,m C, Varian)를 이용하여 200~300 cGy/min의 선량률로 10 Gy를 균일하게 조사하였다. HMA와 genistein은 각각 250 nM와 25$\mu$M농도로 방사선 조사 후 즉시 투여하였다. 실험에서는 세포주기, 오절인자의 발현 및 활성, 노화 및 분화정도 등에 있어서의 시간에 따른 변화를 조사하였다. 결과: 방사선 단독조사에서 KS62세포는 G2기의 정체를 보였으나 정상적인 053을 가지는 세포와는 달리 지속적인 세포주기의 정체를 보이지 않았다. G2정체가 유지되는 동안 cyclin Bl의 점진적인 증가를 관찰할 수 있었으며, 이는 염색체의 복제가 완료되지 않은 상태에서 M기로 진행하여 미성숙한 염색체 응축과 mitotic catastrophe 현상이 나타나는 것과 일치한다. 방사선 조사와 함께 HMA를 투여한 경우에는 G2정체가 빠르게 해소되었으며 동시에 Gl기에서 세포가 정체되는 양상을 보였다. 세포주기 조절인자 cdc2 kinase 활성 증가와 cyclln I와 A 발현 및 CDK2 활성의 감소 등의 현상으로 설명되며, 이는 apoptosis의 증가와 연관성을 갖는다. 반면 genistein의 경우에는 cyclin Bl과 떨cfsc 발현 및 cdc2활성이 모두 감소하는 등 G2정체를 계속 유지하였다. 이와 함께 방사선에 의한 노화와 megakaryocyte로의 분화도 지속되는 것을 관찰할 수 있었다. 결론: HMA와 genistein에 의한 KS62세포의 방사선 유도 세포사망의 변화는 세포주기 조절과 밀접하게 연관되어 있음을 확인하였다. 이는 다양한 방사선 유도 세포사망의 기전을 이해하는 데 독창적인 모델을 제공하며, 방사선을 이용한 암 치료법의 개발에 새로운 표적을 제공할 수 있을 것이다.

Keywords

References

  1. HayflickL,Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961;25:585-621 https://doi.org/10.1016/0014-4827(61)90192-6
  2. Hayflick L. The limited in vitro lifetime of human diploid c e l l strains. Exp Cell Res 1965;37:614-635 https://doi.org/10.1016/0014-4827(65)90211-9
  3. Morgan DO. Principles of CDK regulation. Nature 1995;374: 131-134 https://doi.org/10.1038/374131a0
  4. PoonRY, BandaraLR,AdamczewskiJP,ZamanianM,HuntT, Thangue NB. Cyclin A recruits p33cdk2 to the cellular transcription factor DRTF1. J Cell Sci Suppl 1992;16:77-85
  5. Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclindependent kinases. Genes Dev 1995;9:1149-1163 https://doi.org/10.1101/gad.9.10.1149
  6. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulatorsofG1-phaseprogression.Genes Dev 1999;13:1501- 1512 https://doi.org/10.1101/gad.13.12.1501
  7. Carr AM, Hoekstra MF. The cellular response to DNA damage. Trends Cell Biol 1995;5:32-40 https://doi.org/10.1016/S0962-8924(00)88934-5
  8. Maity A, Kao GD, Mushel RJ, Mcknna WG. Potential molecular targets formanipulating the radiation response.International J Rad Biol 1997;37:639-653 https://doi.org/10.1016/S0360-3016(96)00598-6
  9. IanziniF,CherubiniR,Mackey MA. Mitotic catastrophe induced by exposure of V79 Chinese hamster cells to low energy protons. Int J Radiat Biol 1999;75:717-723 https://doi.org/10.1080/095530099140050
  10. Ianzini F, Mackey MA. Delayed DNA damage associated with mitotic catastrophe following X-irradiation of HeLa S3 cells. Mutagenesis 1998;13:337-344
  11. Ianzini F, Mackey MA. Spontaneous premature chromosome condensation andmitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol 1997;72:409-421 https://doi.org/10.1080/095530097143185
  12. Jeong SJ, Jin YH, Moon CW, et al. Protein tyrosine kinase inhibitors modulate radiosensitivity and radiation-induced apoptosis in K562 cells. Radiat Res 2001;156:751-760 https://doi.org/10.1667/0033-7587(2001)156[0751:PTKIMR]2.0.CO;2
  13. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 1994;83:1179-1187
  14. Amarante-MendesGP,NaekyungKC,Liu L,etal. Bcr- Abl exerts its antiapoptotic effect against diverse apoptotic stimuli through blockageofmitochondrial release ofcytochrome C and activation ofcaspase-3. Blood 1998;91:1700-1705
  15. DeoraAB,MirandaMB,RaoSG. Down-modulation of P210bcr/abl inducesapoptosis/differentiationinK562leukemicblastcells. Tumori 1997;83:756-761
  16. Gambacorti-Passerini C , l e C o u t r e P , M o l o g n i L , e t a l . Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+leukemic cells and induces apoptosis. Blood Cells Mol Dis 1997;23:380-394 https://doi.org/10.1006/bcmd.1997.0155
  17. Murakami H, Nurse P. Meiotic DNA replication checkpoint control in fission yeast. Genes Dev 1999;13:2581-2593 https://doi.org/10.1101/gad.13.19.2581
  18. Hall M, PetersG. Geneticalterations ofcyclins,cyclin-depen dent kinases,and Cdk inhibitors in humancancer.AdvCancerRes 1996;68:67-108
  19. Hirobumi M, Akikazu A, Yoshiho N, et al. Complex mechanism underlying impaired activationofcdk4andcdk2inreplicative senescence: roles of p16, p21, and cyclin D1. Exp Cell Res 1999;253:503-510 https://doi.org/10.1006/excr.1999.4698
  20. Igor BR,Eugenia VB, Bey-Dih C. If nor apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor c e l l . D r ug Resistance Updates 2001;4:303-313 https://doi.org/10.1054/drup.2001.0213
  21. Charanjit S, Donna MP, Joyce S. p16INK4A mediates cyclin dependent kinase 4 and 6 inhibition in senescent prostatic epithelial cells. Canser Research 2000;60:2616-2622
  22. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993;362:847-849 https://doi.org/10.1038/362847a0
  23. YuranZM,HuangY,WhangY,etal. Roleforc-Abltyrosine kinase in growth arrest response to DNA damage. Nature 1996; 382:272-274 https://doi.org/10.1038/382272a0
  24. AgarwalML, Agarwal A,TaylorWR,StarkGR. p53control both the G2/M and the G1 cell cycle checkpoints and mediates reversiblegrowtharrestinhumanfibroblast. ProcNatlAcad Sci USA 1995;92:8493-8497 https://doi.org/10.1073/pnas.92.18.8493
  25. Lotem J, Sachs L. Haematopoitic cells from mice deficient in wild-type p53aremoreresistanttoinduction ofapoptosisby some agents. Blood1993;82:1092-1096
  26. McIlwrath AJ, Vasey PA, Ross GM, Brown R. Cell cycle arrests and radiosensitivityofhumantumorcelllines:Dependence on wild-type p53 for radiosensitivity. Cancer Res 1994; 54:3718-3722
  27. Tobey RA. Different drugs arrest cells at a number ofdistinct stages in G2. Nature 1975;254:245-247 https://doi.org/10.1038/254245a0
  28. Palayoor ST, MacklisRM,BumpEA,ColemanCN. Modulation of radiation-induced apoptosis and G2/M block in murine T-lymphoma cells. Radiat Res 1995;141:235-243 https://doi.org/10.2307/3579000
  29. BunzF,DutriauxA,Lengauer C, et al. Requirement forp53and p21 to sustain G2 arrest after DNA damage. Science 1998;282:1497-1501 https://doi.org/10.1126/science.282.5393.1497
  30. Hermeking H, Lengauer C, Polyak K, et al. 14-3-3$\sigma$ is a p53-regulated inhibitor of G2/M. Mol Cell 1997;1:3-11 https://doi.org/10.1016/S1097-2765(00)80002-7
  31. Chan TA. Hermeking H, Lengauer C, Kinzler KW, Vogelstein B. 14-3-3sigma is required to prevent mitotic catastropheafter DNA damage. Nature 1999;401:616-620
  32. BussePM,BoseSK,JonesRW,TolmachLJ. The action ofcaffeine on X-irradiated HeLa cells. Enhancement of X-ray induced killing during G2 arrest. Radiat Res 1978;76:292-307 https://doi.org/10.2307/3574780
  33. Kumagai A, Yakowee PS, Dunphy WG. 14-3-3 protein act as negative regulators of themitotic inducercdc25 in Xenopus egg extract. Mol Biol Cell 1998;9:345-354 https://doi.org/10.1091/mbc.9.2.345
  34. Stuschke M, Sak A, Wurm R , e t a l . Radiation-induced a p optosis in human non-small-cell cancer cell line is secondary to cell-cycle progression beyondtheG2-phasecheckpoint.IntJ Radiat Biol 2002;78:807-819 https://doi.org/10.1080/09553000210148903
  35. Igor BR, Eugenia VB, Bey-Dih C. If nor apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cell. Drug Resistance Updates 2001;4:303-313 https://doi.org/10.1054/drup.2001.0213
  36. Kim SH, Khil MS, Ryu S, Kim JH. Enhancement of radiation response on human carcinoma cells in culture by pentoxyfilline. Int J Radiat Oncol Biol Phys 1993;25:61-65 https://doi.org/10.1016/0360-3016(93)90145-L
  37. BussePM,BoseSK,JonesRW.TolmachLJ. The action ofcaffeine on X-irradiated HeLa cells. Enhancement of X-ray induced killing during G2 arrest. Radiat Res 1978;76:292-307
  38. ChangBD,BroudeEV,Dokmanovic M, etal. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 1999;59:3761-3767
  39. Sato N,MizunotoK,NakamuraM,TanakaM. Radiation-induced centrosome overduplication and multiple mitotic spindles in human tumor cells. Exp Cell Res 2000;255:321-326 https://doi.org/10.1006/excr.1999.4797
  40. Robles SJ, Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblast. Oncogene 1998;16:1113-1123 https://doi.org/10.1038/sj.onc.1201862