혈관내 방사선치료를 위한 이론적 선원 설계 및 선량적 관점에서의 적합성 연구: 출력변조를 이용한 근접치료에 대한 제안

Conceptual Source Design and Dosimetric Feasibility Study for Intravascular Treatment: A Proposal for Intensity Modulated Brachytherapy

  • 김시용 (Florida 대학교 방사선종양학과) ;
  • 한은영 (Florida 대학교 방사선-원자력공학과) ;
  • ;
  • 하성환 (서울대학교 의과대학 치료방사선과학교실)
  • Kim Siyong (Department of Radiation Oncology, University of Florida) ;
  • Han Eunyoung (Department of Radiological and Nuclear Engineering, University of Florida) ;
  • Palta Jatinder R. (Department of Radiation Oncology, University of Florida) ;
  • Ha Sung W. (Department of Therapeutic Radiology, Seoul National University College of Medicine)
  • 발행 : 2003.06.01

초록

목적: 본 연구는 새로운 근접치료선원의 이론적 설계를 통해 출력변조를 이용한 혈관내 방사선치료를 제안한다. 대상 및 방법: 제시된 이론적 선원은 기존의 선원과는 달리 선원물질과 차폐물질(스테인리스 스틸, 또는 텅스텐) 둘 다로 구성되며 이는 방위방향으로 비대칭적 방사선량을 제공할 수 있게 한다. 따라서, 방위방향으로 선원의 방향과 체류시간을 조절함으로써 출력변조를 통한 근접치료가 가능해진다. Novoste Beta-Cath system에서 사용하는 Sr-90/Y 전자방출 선원과 유사한 모양의 두 가지 단순화한 선원을 연구의 대상으로 고려하였다. 첫 번째 선원은 선원물질과 차폐물질이 각각 반씩 차지하며, 두 번째 선원은 1/4은 선원물질로, 나머지 3/4은 차폐물질로 구성된다. 두 선원에 대해 방위 및 방사방향으로의 선량분포를 MCNP 몬테 카를로 코드를 이용하여 계산하였다. 결과: 선원이 혈관내의 중심에 위치하지 않게 되는 가상조건에서의 선량 최적화 계산을 시도한 결과, 혈관내벽에 미치는 선량의 최고치와 최저치의 차이가 87$\%$에서 7$\%$까지 줄어들 수 있음을 보였다. 결론: 본 연구에서 제시된 이론적 선원은 선량적 관점에서의 적합성 여부에 관해 매우 고무적인 결과를 보여 줌으로써 출력변조를 통한 혈관내 근접방사선치료의 가능성을 나타내었다. 본 과제의 다음 단계는 굵기가 가는 맥관 내에서 선원의 위치를 파악하여 그를 방위방향으로 정확하게 회전시킬 수 있는 방사선 전달 체계의 개발이라 할 수 있다.

Purpose: To propose a conceptual design of a novel source for intensity modulated brachytherapy. Materials and Methods: The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a $^{90}Sr/Y$ Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quater of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. Results: The preliminary hypothetical simulation and optimization results demonstrated the 87$\%$ difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7$\%$ by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. Conclusion: The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

키워드

참고문헌

  1. Waksman R, King SB, Crocker IR, Mould RF. Vascular Brachytherapy. Columbia, MD: Nucletron Corporation, 1996
  2. Waksman R, Robinson KA, Crocker IR, et al. Intracoronary low dose beta irradiation inhibits neointima formation after coronary artery balloon injury in the swine restenosis model. Circulation 1995;92:3025-3031 https://doi.org/10.1161/01.CIR.92.10.3025
  3. Waksman R, Robinson KA, Crocker IR, et al. Intracoronary radiation prior to stent implantation inhibits neointima in stented porcine coronary arteries. Circulation 1995; 92:1383-1386 https://doi.org/10.1161/01.CIR.92.6.1383
  4. Verin V, Popowski Y, Urban P, et al. Intra-arterial beta irradiation prevents neointimal hyperplasia in a hypercholestrolemic rabbit restenosis model. Circulation 1995;92: 2284-2290 https://doi.org/10.1161/01.CIR.92.8.2284
  5. Wiedermann JG, Marboe C, Amols H, Schwartz A, Weinberger J. Intracoronary irradiation markedly reduces restenosis after balloonangioplasty in a porcine model. J Ameri Coll Cardio 1994;23:1491-1498 https://doi.org/10.1016/0735-1097(94)90397-2
  6. Hehrlein C,StintzM, Kinscherf R, et al.Purebetaparticle emitting stents inhibit neointima formation in rabbits. Circulation 1996;93:641-645 https://doi.org/10.1161/01.CIR.93.4.641
  7. Hehrlein C, Gollan C, Donges K, et al. Low-dose radioactive endovascular stents prevent smooth muscle cell proliferation and neointimal hyperplasia in rabbits. Circulation 1995;92:1570-1575 https://doi.org/10.1161/01.CIR.92.6.1570
  8. Laird JR, Carter AJ, Kufs WM, et al. Inhibition of neointimal proliferation with a beta particle emittingstent. Circulation 1996;93:529-536 https://doi.org/10.1161/01.CIR.93.3.529
  9. Carter AJ, Laird JR. Experimental results with endovascular irradiation via a radioactive stent. Int J Radiat Oncol Biol Phys 1996;36:797-803 https://doi.org/10.1016/S0360-3016(96)00410-5
  10. Fischell TA, Carter AJ, Laird JR. The beta-particleemittingradioisotope stent (Isostent): animal studies and planned clinical trials. Am J Cardiol 1996;78:45-50 https://doi.org/10.1016/S0002-9149(96)00489-4
  11. Nath R, Almos H, Coffey C, et al. Intravascular brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 60. Med Phys 1999;26:119-152 https://doi.org/10.1118/1.598496
  12. Amols HI, Zaider M, Weinberger J, et al. Dosimetric considerations for catheter based beta and gamma emitters in the therapy of neointimal hyperplasia in human coronary arteries. Int J Radiat Onc Biol Phys 1996;36:913-921 https://doi.org/10.1016/S0360-3016(96)00301-X
  13. Wexler L, Brundage Brouse J, Detrano R, et al. Coronary artery calcification: pathophysiology, epidermiology, imaging methods, and clinical implications: a statement for health professionals from the American Heart Association. Circulation 1996;94:1175-1192 https://doi.org/10.1161/01.CIR.94.5.1175
  14. Hatsukami TS, Ferguson MS, Beach KW, et al. Carotid plaque morphology and clinical events. Stroke 1997;28:95- 100 https://doi.org/10.1161/01.STR.28.1.95
  15. Hatsukami TS, Thackray BD, Primozich JF, et al. Echolucent regions in carotid plaque: preliminary analysis comparing three-dimensional histologic reconstructions to sonographic findings. Ultrasound Med Biol 1994;20:743-749 https://doi.org/10.1016/0301-5629(94)90031-0
  16. Porter TR, Radio SJ, Anderson JA, et al. Composition of coronary atherosclerotic plaque in the intimaandmedia affects intravascular ultrasound measurements of intimal thickness. J AmCollCardiol 1994;23:1079-1084
  17. Mazzone AM, Urbani MP, Picano E, et al. In vivo ultrasonic parametric imaging of carotid atherosclerotic plaque by videodensitometric technique. Angiology 1995;46:663-672 https://doi.org/10.1177/000331979504600804
  18. Beletsly VY, Lelley RE, Fowler M, et al. Ultrasound densitometric analysis of carotid plaque composition: Pathoanatomic correlation. Stroke 1966;27:2173-2177
  19. LonderoHF,LaguensR,TelaynaJM,etal. Densitometric quantitative analysis of intracoronary ultrasound images: anatomopathological correlation. Int J Card Imaging 1977;13:125-132 https://doi.org/10.1023/A:1005745228757
  20. Briesmeister JF, Editor, MCNPTM. A General Monte Carlo N-Particle Transport Code. Los Alamos National Laboratory report LA-13709-M. April, 2000