${\beta}-Glucan$이 보리 전분의 동적점탄성에 미치는 영향

Effect of Barley ${\beta}-Glucan$ on Dynamic Viscoelasticity of Barley Starch

  • 발행 : 2003.12.01

초록

보리로부터 분리한 ${\beta}$-glucan이 메성 및 찰성 보리전분의 호화 및 겔화시의 동적점탄성에 미치는 영향을 조사하였다. 호화시 ${\beta}$-glucan의 첨가는 찰성전분에 대해서는 거의 영향을 미치지 않았지만 메성전분의 동적점탄성에는 상당한 영향을 미쳐 호화개시온도가 높아졌으며, $80{\sim}90^{\circ}C$의 온도범위에서 저장탄성율과 손실탄성율이 크게 증가하여 저장탄성율의 경우 $90.7{\pm}0.7^{\circ}C$에서 peak를 나타내었다. 겔화과정 중 메성전분은 ${\beta}$-glucan의 첨가에 의해 겔 형성 속도가 상당히 빨라졌고 전분 및 amylose의 회합을 방해하여 network 구조를 약화시키는 것으로 나타났으나 amylose와 ${\beta}$-glucan 사이에 특이한 상호작용은 존재하지 않는 것으로 판명되었다. 한편 찰성전분의 경우에는 ${\beta}$-glucan 첨가에 의해 겔화 양상이 거의 영향을 받지 않는 것으로 나타났다.

The effect of ${\beta}$-glucan, prepared from waxy barley, on the dynamic viscoelasticity of nonwaxy and waxy barley starch during gelatinization and gelation was studied. Although no significant effect was observed on waxy starch, there were drastic changes in the dynamic viscoelasticity of nonwaxy starch. The gelatinization onset temperature of nonwaxy starch shifted to a higher temperature and showed a drastic increase in storage modulus and loss modulus at the range of $80{\sim}90^{\circ}C$. During the gelation of nonwaxy starch, ${\beta}$-glucan increased the rate of gel formation and weakened the network of starch and amylose by prohibiting their association. Therefore, we proved that there was no specific interaction between amylose and ${\beta}$-glucan. The addition of ${\beta}$-glucan to waxy starch seemed to have no effect of waxy starch.

키워드

참고문헌

  1. Doublier, J.L., Llamas, G. and LeMeur, M. A rheological investigation of cereal starch pastes and gels. Effect of pasting procedures. Carbohydr. Polym. 7: 251-275 (1987) https://doi.org/10.1016/0144-8617(87)90063-4
  2. Eliasson, A.C. Viscoelastic behavior during the gelatinization of starch. I. Comparison of wheat, maize, potato and waxy barley starches. J. Texture Stud. 17: 253-265 (1986) https://doi.org/10.1111/j.1745-4603.1986.tb00551.x
  3. Alloncle, M. and Doublier, J.L. Viscoelastic properties of maize starch/hydrocolloid pastes and gels. Food Hydrocolloids 5: 455-467 (1991) https://doi.org/10.1016/S0268-005X(09)80104-5
  4. Yoshimura, M., Takasa, T. and Nishinari, K Effects of konjacglucomannan on the gelatinization and retrogradation of corn starch as determined by rheology and differential scanning calorimetry. J. Agric. Food Chem. 44: 2970-2976 (1996) https://doi.org/10.1021/jf960221h
  5. Biliaderis, C.G., Thessaloniki, A., Izydorczyk, M.S. and Prokopowich, W. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch/Starke 49: 278-283 (1997) https://doi.org/10.1002/star.19970490706
  6. Kulicke, W.-M., Eidam, D., Kath, F, Kix, M. and Kull, A.H. Hydrocolloids and rheology : Regulation of viscoelastic characteristics of waxy rice starch in mixtures with galactomannan. St\ddot{a}rke/ Starch 48: 105-114 (1996) https://doi.org/10.1002/star.19960480307
  7. Bagley, E.B. and Christianson, D.D. Swelling capacity of starch and its relationship to suspension viscosity. Effects of cooking time, temperature and concentration. J. Texture Stud. 13: 115-126 (1982) https://doi.org/10.1111/j.1745-4603.1982.tb00881.x
  8. Sajjan, S.U. and Rao, M.R.R. Effect of hydrocolloids on the rheological properties of wheat starch. Carbohydr. Polym. 7: 395-402 (1987) https://doi.org/10.1016/0144-8617(87)90005-1
  9. Bahnassey, Y.A. and Breene, M.W. Rapid-visco analyzer pasting profiles of wheat, corn, waxy corn, tapioca and amaranth starches in the presence of konjac flour, gellan, guar, xanthan and locust bean gums. Starch/St\ddot{a}rke 46: 134-141 (1994) https://doi.org/10.1002/star.19940460404
  10. Ring, S.G. Some studies on starch gelation. Starch/St\ddot{a}rke 37: 80-83 (1985) https://doi.org/10.1002/star.19850370303
  11. Christianson, D.D. Hydrocolloid interactions with starches, pp. 399-419. In: Food Carbohydrates. Lineback, D.R. and Inglett, G.E. (ed.) AVIPublic. Comp.Inc., Westport, CT, USA (1982)
  12. Eidam, D., Kulicke, W.M., Kuhn, K. and Stute, R. Formation of maize starch gels selectively regulated by the addition of hydrocolloids. Starch/St\ddot{a}rke 47: 378-384 (1995) https://doi.org/10.1002/star.19950471003
  13. Casas, L.A. and Garcia-Ochoa, F. Viscosity of solutions of xanthan/ locust bean gum mixtures. J. Sci. Food Agric. 79: 25-31 (1999) https://doi.org/10.1002/(SICI)1097-0010(199901)79:1<25::AID-JSFA164>3.0.CO;2-D
  14. Schorsch, C., Garnier, C. and Doublier, J.-L. Viscoelastic properties of xanthan/galactomannan mixtures: comparison of guar gum with locust bean gum. Carbohydr. Polym. 34: 165-175 (1997) https://doi.org/10.1016/S0144-8617(97)00095-7
  15. Woodward, J.R., Fincher, G.B. and Stone, B.A. Water-soluble (1$\rightarrow$3),(1$\rightarrow$4)-$\beta$-D-glucans from barley (Hordeum vulgare) endosperm. I. Physicochemical properties. Carbohydr. Polym. 3: 143-156 (1983)
  16. Woodward, J.R., Fincher, G.B. and Stone, B.A. Water-soluble (1$\rightarrow$3),(1$\rightarrow$4)-$\beta$-D-glucans from barley(Hordeum Vulgare) endosperm, II. Fine structure. Carbohydr. Polym. 3: 207-225 (1983) https://doi.org/10.1016/0144-8617(83)90019-X
  17. Kim, S.R., Choi, H.D., Seog, H.M., Kim, S.S. and Lee, Y.T. Physicochemical characteristics of $\beta$-glucan isolated from barley. Korean J. Food Sci. Technol. 31: 1164-1170 (1999)
  18. Sung, J.E., Lee, Y.T., Seog, H.M., Kim, Y.S. and Ko, Y.S. Characteristics of $\beta$-glucan gums from normal and waxy hull-less barleys. Korean J. Food Sci. Technol. 31: 644-650 (1999)
  19. Wood, P.J., Paton, D. and Siddique, I.R. Determination of betaglucan in oats and barley. Cereal Chem. 54: 524-533 (1977)
  20. Lee, Y.T. $\beta$-Glucans from hull-less barley: Isolation, chemical and rheological characterization, and utilization as a food gum. Ph.D. dissertation, North Dakota State Univ., ND, USA (1992)
  21. MacGregor, A.W. Isolation of large and small granules of barley starch and a study of factors influencing the absorption of barley malt $\alpha$-amylase by thease granules. Cereal Chem. 56: 430-434 (1979)
  22. Katsuta, K. Dynamic viscoelastic behavior of rice starch suspension on the gelatinization process. J. Appl. Glycosci. 43: 541-543 (1996)
  23. Eliasson, A.C. and Bohlin, L. Rheological properties of concentrated wheat starch gels. Starch/St\ddot{a}rke 34: 267-272 (1982) https://doi.org/10.1002/star.19820340805
  24. Lii, C.Y, Shao, Y.Y. and Tseng, K.H. Gelation mechanism and rheological properties of rice starch. Cereal Chem. 72: 393-400 (1995)
  25. Choi, H.D., Seog, H.M., Kim, S.R., Park, Y.G. and Lee, C.H. Effect of $\beta$-glucan on gelatinization of barley starch. Korean J. Food Sci. Technol. 35: 545-550 (2003)
  26. Eliasson, A.C. Viscoelastic behaviour during the gelatinization of starch. I. Comparison of wheat, maize, potato and waxy-barley starches. J. Texture Stud. 17: 253-265 (1986) https://doi.org/10.1111/j.1745-4603.1986.tb00551.x
  27. Biliaderis, C.G., Thessaloniki, A., Izydorczyk, M.S. and Prokopowich, W. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch/St\ddot{a}rke 49: 278-283 (1997) https://doi.org/10.1002/star.19970490706
  28. Doublier, J.L. and Choplin, L. A rheological description of amylose gelation. Carbohydr. Res. 193: 215-226 (1989) https://doi.org/10.1016/0008-6215(89)85120-1
  29. Miles, M.J., Morris, V.J., Orford, P.D. and Ring, S.G. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135: 271-281 (1985) https://doi.org/10.1016/S0008-6215(00)90778-X
  30. Kalichevsky, M.T., Orford, P.D. and Ring, S.G. The incompatibility of concentrated aqueous solutions of dextran and amylose and its effect on amylose gelation. Carbohydr. Polym. 6: 145-154 (1986) https://doi.org/10.1016/0144-8617(86)90040-8
  31. Kalichevsky, M.T. and Ring, S.G. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydr. Res. 162: 323-328 (1987) https://doi.org/10.1016/0008-6215(87)80229-X