Purification and Characterization of Polyphenol Oxidase from Lotus Root (Nelumbo nucifera G.)

연근의 polyphenol oxidase 정제 및 특성조사

  • Moon, Sang-Mi (Department of Food Biotechnology, Mokpo National University) ;
  • Kim, Hyun-Jin (Department of Food Science and Human Nutrition, Clemson University) ;
  • Ham, Kyung-Sik (Department of Food Biotechnology, Mokpo National University)
  • 문상미 (목포대학교 식품생물공학전공) ;
  • 김현진 (미국 클렘슨 대학교 식품과학과) ;
  • 함경식 (목포대학교 식품생물공학전공)
  • Published : 2003.10.01

Abstract

Polyphenol oxidase isoforms were purified from the lotus roots using 50% acetone precipitation, conventional chromatographies of Q-Sepharose and hydrophobic interaction, and high performance liquid chromatographies of Mono-Q and Superdex 75 gel-filtration. Molecular mass of a purified PPO isoform (LPIII-2) was determined to be 56 kDa using gel-filtration chromatography. The active form of LPIII-2 appeared to bea heterodimer, as purified LPIII-2 on SDS-PAGE gel showed two bands that were determined to be 28 kDa and 26 kDa. To further characterize PPO, partially purified PPO isoforms (LP-II, LP-III) were obtained from Q-Sepharose anion-exchange chromatography. In substrate specificity, the partially purified PPO isoform LP-II showed a high affinity to catechol, while LP-III showed a high affinity to pyrogallol. The optimum pH of LP-II and LP-III was pH 7.0. Interestingly, the partially purified PPO isoforms showed high activities at low temperatures $(0{\sim}5^{\circ}C)$, and as temperatures rose, the activities decreased. Both PPO isoforms were stable at $40^{\circ}C$ and were inactivated by incubation at $60^{\circ}C$ for 40 min.

박피된 절편 연근의 갈변억제를 효과적으로 하기 위한 기초연구로 갈변의 주원인 효소인 polyphenol oxidase(PPO)를 분리, 정제하여 특성을 조사하였다. 박피된 절편 연근을 24시간 동안 $4^{\circ}C$에 방치하여 PPO 활성을 증가시켜 조효소액을 제조하였으며 PPO 조효소액을 acetone으로 침전시킨 후 Q-Sepharose anion-exchange column, Phenyl-Sepharose hydrophobic interaction column의 conventional column과 Mono-Q anion-exchange column, Superdex 75 gel-filtration column의 HPLC column을 이용하여 PPO 활성이 가장 높은 한 개의 PPO isoform LPIII-2를 최종 분리 정제하였다. 분리 정제된 LPIII-2의 분자량을 gel-filtration chromatography를 이용하여 측정한 결과 56kDa이었으며 SDS-PAGE를 실시한 후 silver staining한 결과 LPIII-2의 분자량은 28kDa와 26kDa으로 2개의 band를 형성하는 것으로 보아 heterodimer인 것으로 추정되었다. PPO isoform의 특성 조사를 위하여 Q-Sepharose anion-exchange chromatography를 이용하여 부분분리 정제된 2개의 isoforms(LP-II, LP-III)를 가지고 기질 특이성을 조사한 결과 LP-II의 경우 $5^{\circ}C$$30^{\circ}C$ 모두 catechol에 대한 기질 친화력이 높았으며 LP-III의 경우 $5^{\circ}C$$30^{\circ}C$ 모두에서 pyrogallol에 기질 친화력이 높았다. 그리고 pH 7에서 최적 pH를 보였으며 열안정성은 $40^{\circ}C$에서 60분간 열처리했을 때 안정하였지만 $60^{\circ}C$에서 40분, $80^{\circ}C$에서 10분간 열처리했을 때 효소가 불활성화되었다. 특이하게도 연근의 PPO는 다른 과채류의 PPO와 반응온도에 따른 특성이 달랐는데 여러 반응온도에서 효소 활성을 측정한 결과 연근 PPO isoform LP-II와 LP-III 모두 $5^{\circ}C$의 반응온도에서 높은 효소활성을 보였으며 온도가 올라갈수록 반응속도가 떨어지는 특성을 보였다.

Keywords

References

  1. Kim, Y.-S., Chun, S.-S., Jung, S.-T. and Kim, R.-Y. Effect of lotus root powder on the quality of dough. Korean J. Soc. Food Cookery Sci. 18: 573-578 (2002)
  2. Kim, Y.-S., Jeon, S.-S. and Jung, S.-T. Effect of lotus root powder on the baking quality of wheat bread. Korean J. Soc. Food Cookery Sci. 18: 413-425 (2002)
  3. Park, W.P., Cho, S.H. and Lee, D.S. Screening of antibrowning agents for minimally porcessed vegetable. Korean J. Food Sci. Technol. 30: 278-282 (1998)
  4. Park, S.-Y., Hwang, T.-Y., Kim, J.-H. and Moon, K.-D. Quality changes of minimally processed lotus root (Nelumbo nucifera) with browning inhibitors. Korean J. Postharvest Sci. Technol. 8: 164-168 (2001)
  5. Kim, D.M. Minimal processing technology of fruits and vegetables. Food Sci. Ind. 30: 95-102 (1997)
  6. Kim, D.M. Extension of freshness of minimally processed fruits and vegetable. Korean J. Hort. Sci. Technol. 17: 790-795 (1999)
  7. Jang, J.-S. and Hong, G.-H. The effects of storage temperature and pH on color change in garlic puree. Korean J. Postharvest Sci. Technol. 5: 211-216 (1998)
  8. Choi, S.-T., Chang, K.-S., Lim, B.-S., Lee, C.-S. and Kim, Y.-B. Effect of storage and marketing condition on biochemical property changes of garlic (Allium sativum L.). Korean J. Postharvest Sci. Technol. 5: 111-117 (1998)
  9. Seo, J.H., Hwang, Y.S., Chun, J.P. and Lee, J.-C. Change of phenolic compounds and occurrence of skin browning, and characterization of partially purified polyphenol oxidases in oriental pear fruits. J. Korean Soc. Hort. Sci. 42: 184-188 (2001)
  10. Espm, J.C., Morales, M., Gracin-Ruiz, P.A., Tedela, J. and Garcia-Canovas, F. Improvement of a continuous spectrophotometric method for determining the monophenolase and diphenolase activities of mushroom polyphenol oxidase. J. Agric. Food Chem. 45: 1084-1090 (1997) https://doi.org/10.1021/jf960428a
  11. Kubo, E., Kinst-Hori, I., Kubo, Y., Yamagiwa, Y., Kamikawa, T. and Haraguchi, H. Molecular design of antibrowning agents. J. Agric. Food Chem. 48: 1393-1399 (2000) https://doi.org/10.1021/jf990926u
  12. Van Gelder, C.W.G., Flurkey, W.H. and Wichers, H.J. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45: 1309-1323 (1997) https://doi.org/10.1016/S0031-9422(97)00186-6
  13. Mayer, A.M. Polyphenol oxidase in plants-recent progress. Phytochemistry 26: 11-20 (1987) https://doi.org/10.1016/S0031-9422(00)81472-7
  14. Friedman, M. Chemistry, biochemistry, and dietary role of potato polyphenols. J. Agric. Food Chem. 45: 1523-1540 (1997) https://doi.org/10.1021/jf960900s
  15. Van Geledr, C.W.G., Flurkey, W.H. and Wichers, H.J. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45: 1309-1323 (1997) https://doi.org/10.1016/S0031-9422(97)00186-6
  16. Burton, K.S., Love, M.E. and Smith, J.F. Biochemical changes associated with mushroom quality in Agaricus spp.. Enzyme Mirobiol. Technol. 15: 736-741 (1993) https://doi.org/10.1016/0141-0229(93)90003-K
  17. Valero, E. and Garcia-Carmona, F. pH-dependent effect of sodium chloride on latent grape polyphenol oxidase. J. Agric. Food Chem. 46: 2447-2451 (1998) https://doi.org/10.1021/jf971088b
  18. Espin, J.C., van Leeuwen, J. and Wichers, H.J. Kinetic study of the activation process of a latent mushroom (Agaricus bisporus) tyrosinase by serine proteases. J. Agric. Food Chem. 47: 3509-3517 (1999) https://doi.org/10.1021/jf9813539
  19. Rathjen, A.H. and Robinson, S.P. Aberrant processing of polyphenol oxidase in a variegated grapevine mutant. Plant PhysioL 99: 1619-1625 (1992) https://doi.org/10.1104/pp.99.4.1619
  20. Sodfrhall, J. Properties of carrot polyphenol oxidase. Phytochemistry 39: 33-38 (1995) https://doi.org/10.1016/0031-9422(94)00918-J
  21. Thipyapong, P. and Steffens, J.C. Tomato polyphenol oxidase. Plant Physiol 115: 409-418 (1997)
  22. Sanchez-Ferrer, A., Laveda, F. and Garcia-Carmona, F. Substratedependent activation of latent leaf polyphenol oxidase by anionic surfactants. J. Agric. Food Chem. 41: 1583-1586 (1993) https://doi.org/10.1021/jf00034a010
  23. Moore, B.M. and Flurkey, W.H. Sodium dodecyl sulfate activation of a plant polyphenol oxidase: Effect of sodium dodecyl sulfate on enzymatic and physical characteristics of purified broad bean polyphenol oxidase. J. BioI. Chem. 265: 4982-4988 (1990)
  24. Burton, S.G. and Duncan, J.R. Activation of mushroom polyphenol oxidase in organic medium by the detergent SDS. Biotechnol. Lett. 17: 627-630 (1995) https://doi.org/10.1007/BF00129390
  25. Espin, J.C. and Wichers, H.J. Kinetics of activation of latent mushroom (Agaricus bisporus) tyrosinase by benzyl alcohol. J. Agric. Food Chem. 47: 3503-3508 (1999) https://doi.org/10.1021/jf981334z
  26. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  27. Pyo, H.-F., Son, D.-Y. and Lee, C. Purification and characterization of polyphenol oxidase from Flammulina velutips. Korean J. Food Sci. Technol. 34: 552-558 (2002)
  28. Kim, D.-Y., Rhee, C.-O. and Kim, Y.-B. Characteristics of polyphenol oxidase from garlic (Allium sativum L.). J. Korean Agric. Chem. Soc. 24: 167-173 (1981)
  29. Kahn, V. Polyphenol oxidase isoenzymes in avocado. Phytochemistry 15: 267-272 (1976) https://doi.org/10.1016/S0031-9422(00)89001-9
  30. Ham, K.-S., Kauffmann S., Albersheim, P. and Darvill, A.G. Host-pathogen interactions XXXIX. A soybean pathogenesisrelated protein with $\beta$-1,3-glucanase activity releases phytoalexin elicitor-active heat-stable fragments from fungal walls. Mol. Plant-Microbe Interactions 4: 545-552 (1991) https://doi.org/10.1094/MPMI-4-545
  31. Donald, V. and Judith, G.V. Biochemistry, pp. 345-370. John Wiley & Sons, Inc., New York, USA (1995)