Analysis of Optimal Mixture Ratio for Extrudate of the Soymilk Residue and Corn Grits by Mixture Design

혼합물 실험 계획법에 의한 두유박과 옥분 압출성형물의 최적 혼합비 분석

  • Han, Gyu-Hong (Department of Food Science and Technology, KyungHee University) ;
  • Kim, Byung-Yong (Department of Food Science and Technology, KyungHee University)
  • 한규홍 (경희대학교 생명과학부 식품공학과) ;
  • 김병용 (경희대학교 생명과학부 식품공학과)
  • Published : 2003.08.01

Abstract

Experimental designs were applied to optimize the mixture ratio for the extrudate made by soymilk residue and corn grits. Nine candidate points were examined for their significance on extrudate using the modified distance design. Bending force, expansion ratio, bulk density, water solubility index (WSI), water absorption index (WAI) and color $(L^*,\;a^*,\;b^*)$ were the significant factors improving the extruded cereal production, and these values were applied to the mathematical models. Results showed that bending force, expansion ratio WSI, WAI and color $(L^*,\;b^*)$ increased with increasing the corn grits, whereas bulk density tended to decrease. The statistical study showed that the fitted models were adequate to describe the contour plot and all responses. Optimum mixture ratio allowing to maximize the two responses (expansion ratio and $b^*$) and minimize the response (WAI) were examined with a numerical optimization methods. The numerical optimization method was obtained as 53.18% : 46.19% (corn grits : soymilk residue).

두유박 시리얼을 제조하는데 최적 배합비를 산출하기 위하여 혼합물 실험 계획법을 사용하였다. 두유박 $30{\sim}80%$과 옥분 $20{\sim}70%$의 제약조건으로 실험디자인을 하여 압출성형을 한 결과, 두유박 함량이 증가할수록 시리얼의 팽화율은 작아지고 용적 밀도는 높아진 반면에 옥분의 함량이 증가할수록 팽화율과 절단강도, 수분용해지수, 수분흡수지수를 증가시켰다. 시리얼의 색도에서는 두유박을 첨가할수록 어두워지고, 옥분은 $L^*$값과 $b^*$값에 큰 영향을 주었다. 모델화 및 분석을 통한 반응 결과는 팽화율, 절단강도, 수분흡착지수는 quadratic 모델이 설정되고, 용적밀도, 수분용해지수, 색도는 linear 모델이 설정되었다. 색도의 $a^*$을 제외한 모든 반응결과에서 5% 이내의 유의차를 보여주어 모델에 대한 적합성을 입증하였고, 예측된 반응식을 통하여 혼합물내의 성분들이 시리얼에 미치는 영향을 살펴볼 수 있었다. 결과적으로 각 반응의 모델에서 나타난 계수를 이용한 수치 최적화를 하였을 때, 두유박 46.19%, 옥분 53.81%의 최적 배합비가 산출되었다.

Keywords

References

  1. Wang, H.L. and Cavins, J.F. Yield and amino acid composition of fractions obtained during tofu production. Cereal Chem. 66: 359-361 (1989)
  2. Choi, J.B. and Kim, Z.U. Use of soymilk residue to noodle. J. Korean Soc. Agric. Chem. Biotechnol. 31: 65-78 (1990)
  3. Kim, Z.U. and Park, W.P. Making of extruded noodles mixed with soymilk residue. J. Korean Soc. Agric. Chem. Biotechnol. 33: 216-222 (1990)
  4. Kim, Z.U., Bang, C.S., Choi, J.B. and Lim, C.S. Utilization of soymilk residue for wheat doenjang. J. Korean Soc. Agric. Chem. Biotechnol. 32: 357-361 (1989)
  5. Hong, J.S., Kim, M.K., Yoon, S. and Ryu, N.S. Preparation of dietary fiber sources using apple pomace and soymilk residue. J. Korean Soc. Agric. Chem. Biotechnol. 36: 73-79 (1993)
  6. Ma, C.Y., Liu, W.S., Kwok, K.C. and Kwok, F. Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 29: 799-805 (1997)
  7. Matsuo, M. Preparation and components of okara-ontjom, a traditional Indonesian fermented food. Nippon Shokuhin Kagaku Kogaku Kaishi 44: 632-639 (1997) https://doi.org/10.3136/nskkk.44.632
  8. Cornell, J.A. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture data, pp. 1-8. John Wiley & Sons, New York,USA (1990)
  9. Ellek$\ae$r, M.R, N$\ae$s, T. and Baardseth, P. Milk proteins affect yield and sensory quality of cooked sausages. J. Food Sci. 61: 660-666 (1996) https://doi.org/10.1111/j.1365-2621.1996.tb13181.x
  10. N$\ae$s, T., Bjerke, F. and Frergestad, E.M. A comparison of design and analysis techniques for mixtures. Food Qual. Prefer. 10: 209-217 (1999) https://doi.org/10.1016/S0950-3293(99)00018-X
  11. Saguy, I., Mishkin, M.A. and Karel, M. Optimization methods and available software. Part 1. CRC Crit. Rev. Food Sci. Nutr. 20: 275-299 (1984) https://doi.org/10.1080/10408398409527392
  12. Alavi, S.H., Gogoi, B.K, Khan, M., Bowman, B.J. and Rizvi, S.S.H. Structural properties of protein-stabilized starch-based supercritical fluid extrudates. Food Res. Int. 32: 107-118 (1999) https://doi.org/10.1016/S0963-9969(99)00063-0
  13. Park, K.H. Elucidation of the extrusion puffing process. Ph.D. dissertation, University of Illinois, Urbana, USA (1976)
  14. Anderson, R.A. Water absorption and solubility and amylograph characteristics of roll-cooked grain products. Cereal Chem. 59: 265-269 (1982)
  15. Snee, R.D. Experimental designs for mixture systems with multicomponent constraints. Comm. Stat. Theory Meth. 8: 337-338 (1979) https://doi.org/10.1080/03610927908827764
  16. Derringer, G. and Suich, R. Simultaneous optimization of several response variables. J. Quality Technol. 12: 214-219 (1980) https://doi.org/10.1080/00224065.1980.11980968
  17. Paton, D. and Spratt, W.A. Component interactions in the extrusion cooking process: Influence of process conditions on the functional viscosity of the wheat flour system. J. Food Sci. 49: 1380-1385 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb14995.x
  18. Chinnaswamy, R. and Hanna, M.A. Expansion, color and shear strength properties of com starches extrusion cooked with urea and salts. Starch/Starke 40: 186-190 (1988) https://doi.org/10.1002/star.19880400507
  19. Launay, B. and Lisch, L.M. Twin-screw extrusion cooking of starches: Flow behavior of starch pastes, expansion and mechanical properties of extrudates. J. Food Eng. 2: 259-280 (1983) https://doi.org/10.1016/0260-8774(83)90015-8
  20. Chavez-Jauregui, R.N., Silva, M.E.M.P. and Areas, J.A.G. Extrusion cooking process for amaranth (Amaranthus caudatus L.). J. Food Sci. 65: 1009-1015 (2000) https://doi.org/10.1111/j.1365-2621.2000.tb09408.x
  21. Kokini, J.L., Chang, C.N. and Kai, L.S. The role of rheological properties on extrudate expansion, pp. 630-652. In: Food Extrusion Science and Technology. Kokini, J.L., Ho, C.T. and Karwe, M.V. (eds.). Rutgers, The State University of New Jersey, New Brunswick, NJ, USA (1992)
  22. Ryu, G.H. and Mulvaney, S.J. Analysis of physical properties and mechanical energy input of cornmeal extrudates fortified with dairy products by carbon dioxide injection. Korean J. Food Sci. Technol. 29: 947-954 (1997)
  23. Pelembe, L.A.M., Erasmus, C. and Taulor, J.R.N. Development of a protein-rich composite sorghum-cowpea instant porridge by extrusion cooking process. Lebensm. Wiss. Technol. 35: 120-127 (2002) https://doi.org/10.1006/fstl.2001.0812
  24. Singh, R.K., Nielsen, S.S. and Chambers, J.V. Selected characteristics of extruded blends of milk protein raffinate or nonfat dry milk with com flour. J. Food Proc. Preser. 15: 285-302 (1991) https://doi.org/10.1111/j.1745-4549.1991.tb00173.x
  25. Ilo, S., Liu, Y. and Berghofer, E. Extrusion cooking of rice flour and amaranth blends. Lebensm. Wiss. Technol. 32: 79-88 (1999) https://doi.org/10.1006/fstl.1998.0497
  26. Han, G.H., Kim, B.Y. and Lee, J.K. Production of extrudates formulated from pacific sand lance by-product and dried biji. Korean J. Food Sci. Technol.34: 186-193 (2002)
  27. Kim, S.M. Surimi-alginate gels as affected by setting: a study based on mixture design and regression models. Food Res. Int. 36: 295-302 (2003) https://doi.org/10.1016/S0963-9969(02)00171-0