FINITE ELEMENT ANALYSIS OF FIN-TYPE IMPLANT FIXTURES

Fin type 임플랜트 고정체의 유한요소법적 분석

  • Kim, Su-Gwan (Dept. of Oral & Maxillofacial Surgery, College of Dentistry, Chosun University) ;
  • Chon, Chang-Gil (Dept. of Periodontology, College of Dentistry, Chosun University) ;
  • Hwang, Gab-Woon (Dept. of Engineering, Song-Won College) ;
  • Kim, Byung-Ock (Dept. of Periodontology, College of Dentistry, Chosun University)
  • 김수관 (조선대학교 치과대학 구강악안면외과학교실) ;
  • 전창길 (조선대학교 치과대학 치주과학교실) ;
  • 황갑운 (송원대학교 자동차학과교실) ;
  • 김병옥 (조선대학교 치과대학 치주과학교실)
  • Published : 2003.02.28

Abstract

The purpose of this study was to analyze the stress pattern in different bone densities surrounding fin-type implant fixtures under the vertical and inclined loads ($30^{\circ}) of 200N. Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the loads were calculated by using the finite element method. Four different types of bicon implant fixture were used for this study. The geometries of implant fixtures to develop the model were used by a sales brochure and profile project. Three-dimensional finite element model of the mandible was developed with 6.0 mm implant in diameter wurrounded by approximately 2.5 mm of bone. Bone densities were classified according to the elastic modulus of the tree. The finite element program MSC PATRAN (MSC, Software Corp., USA) were used for analysis of stress distribution. The value of the Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the vertical and inclined loads were decreased when the diameter of implant fixture was increased, and increased when the elastic modulus was decreased. The stress on implant fixture under the vertical and inclined loads was distributed through the length of implant fixtures in D3 and D4. The distribution of stress was influenced by the direction of loads. In the wide diameter of implants, the stress was developed at outer surface of bone. In conclusion, this study suggest that stress developing on the peri-implant tissues might be influenced by the dimension of implant, elastic modulus of bone, and direction of loads.

Keywords

References

  1. 김명래, 한중석, 최장우, 최용창, 김용식 : 최신 임플란트 치과학, 2판, 서울:나래출판사, pp. 339-353, 381-396, 2000.
  2. 김희주, 이재훈, 계기성, 조규종 : 골변화에 따른 치근형 임플랜트의 유한요소법적 응력분석. 구강생물학연구 1996;20:87-105.
  3. Davarpanah M, Martinez H, Tecucianu JF, Hage G, Lazzara R : The modified osteotome technique. Int J Periodontics Restorative Dent 2001;21:599-607.
  4. 박준아, 류선열 : 하악골 과두부의 유한요소법에 의한 이차원 응력해석. 대한구강악안면외과학회지 1994;20:501-514.
  5. 장두익, 정재헌 : 골내 임플랜트의 종류에 따른 광탄성 응력 분석. 구강생물학연구 1993;17:137-154.
  6. 전진영, 김영수 : 골유착성 치근형 임프란트에 관한 광탄성 응력분석. 대한치과교합학회지 1988;5:7-19.
  7. 서구종, 류선열 : 골유착성 임프란트의 유한요소법적 응력분석. 전남치대 논문집 1991;3:183-193.
  8. 지창주, 조인호 : 골밀도, 피질골, 이용법 및 보철물 설계에 따른 하악 임플랜트의 삼차원적 유한요소 분석. 대한구강악안면임프란트학회지 2000;4:6-46.
  9. 고헌주, 정재헌 : 골유착성 임프란트 보철수복시 자연 지대치와의 고정유무에 따른 유한요소법적 응력분석. 대한치과보철학회지 1991;29:147-160.
  10. 김동원, 김영수 : 각종 형태의 골내 임프란트와 해부학적 치형에 관한 광탄성응력분석. 대한치과교합학회지 1984;3:25-36.
  11. 김동원, 김영수 : 골유착성 보철물에 관한 삼차원 유한요소 분석적연구. 대한치과보철학회지 1991;29:167-213.
  12. 김영일 : 골유착성 임플랜트 보철치료시 자연지대치와의 연결방법에 따른 광탄성 응력 분석 연구. 조선대학교 대학원 논문 1992.
  13. 김성철, 이윤상, 이민영, 이건주, 박준우, 한호진 등 : 하악 골체부골절시 소형 금속판의 위치에 따른 응력분포의 유한요소적 해석. 대한구강악안면외과학회지 1995;21:346-354.
  14. 김성철, 엄기정, 신성수, 최동주, 권순용, 박영주 등 : 하악골 과두부의 운동방향에 따른 유한요소법에 의한 삼차원적 응력해석. 대한구강악안면외과학회지 1998;24:263-275.
  15. 박기덕, 류선열 : 하악골 우각부 골절시 교합력에 대한 소형금속판 내고정의 삼차원적 응력분석. 대한구강악안면외과학회지 1993;19:499-513.
  16. Strong JT, Misch CE, Bidez MW, Nalluri P : Functional Surface Area:Thread-Form Parameter Optimization for Implant Body Design. Compendium (Special) 1998;19:4-9.
  17. Rieger MR, Mayberry M, Brose MO : Finite element analysis of six endosseous implants. J Prosthet Dent 1990;63:671-676. https://doi.org/10.1016/0022-3913(90)90325-7
  18. Skalak R : Biomechnical considerations in osseointegrated prostheses. J Prosthet Dent 1983;49:843-849. https://doi.org/10.1016/0022-3913(83)90361-X
  19. Skalak R : Aspects of biomechanical considerations. in Branemark PI, Zarb GA, Albrektsson T : Tissue integrated Prostheses, Chicago, Quintessence Pub. Co., pp. 117-128, 1985.
  20. Rieger MR, Adams WK, Kinzel GL, Brose MD : Alternative materials for three endosseous implants. J Prosthet Dent 1989;62:317-322.
  21. Rieger MR, Adams WK, Kinzel GL : A finite element survey of eleven endosseous implant. J Prosthet Dent 1990;63:457-465. https://doi.org/10.1016/0022-3913(90)90238-8
  22. 김우택, 차용두, 오세종, 박상수, 김현우, 박양호 등 : 수직력하에서 임프란트 나사형태에 따른 응력의 3차원 유한요소법적 분석. 대한구강악안면외과학회지 2001;27:111-117.
  23. Lavernia CJ, Cook SD, Weinstein AM, Lawitter JK : An analysis of stresses in a dental implant system. J Biomed 14:555, 1981. (Cited form 15)
  24. Klokkevold PR, Newman MG : Current Status of Dental Implants: A Periodontal Perspective. Int J Oral Maxillofac Implants 2000;15:56-65.
  25. Beck GH : Restoration of an Edentulous Maxilla Using Implants Designed for Specific Bone Densities: A Case Study. Compendium (Special) 1998;19(3):37-40.
  26. Hoar JE, Beck GH, Crawford EA, Resnik RR : Prospective Evaluation of Crestal Bone Remodeling of a Bone Density-Base Dental Implant System. Compendium (Special) 1998;19:17-24.
  27. Lavelle CL, Wedgwood D, Love WB : Some advances in endosseous implants. J Oral Rehabil 1981;8:319-331. https://doi.org/10.1111/j.1365-2842.1981.tb00506.x
  28. Meijer HJA, Kuiper JH, Starmans FJM, Bosman F : Stress distribution around dental implants. J Prosthet Dent 1992;68:96-102. https://doi.org/10.1016/0022-3913(92)90293-J
  29. Mish CE : Density of bone: effect on treatment plans, surgical approach, healing, and progressive bone loading. Int J Oral Implant 1990;6:23-31.
  30. Jaffin RA, Berman CL : The excessive loss of Branemark fixture s in type IV bone: a 5-year analysis. J Periodontol 1991;62:2-4. https://doi.org/10.1902/jop.1991.62.1.2
  31. Mish CE, Hoar JB, Beck G, Hazen R : A bone quality based implant system: a preliminary report of stage I and stage II. Implant Dent 1998;7:35-42. https://doi.org/10.1097/00008505-199804000-00004