$La^{3+}$에 의한 토마토 뿌리조직 마이크로솜 $H^+-ATPase$ 활성저해

Lanthanum-induced Inhibitions of Microsomal $H^+-ATPase$ in the Roots of Tomato

  • 조광현 (충북대학교 농과대학 농화학과) ;
  • 김영기 (충북대학교 농과대학 농화학과)
  • Cho, Kwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Young-Kee (Department of Agricultural Chemistry, Chungbuk National University)
  • 발행 : 2003.05.31

초록

$H^+-ATPase$ 활성을 조절할 수 있는 물질을 찾기 위하여 토마토 뿌리조직으로부터 마이크로솜을 분리하고 $La^{3+}$의 효과를 조사하였다. 원형질막 및 액포막에 위치하는 $H^+-ATPase$의 활성은 각각의 선택적 저해제인 vanadate와 $NO_3-$의 처리시 감소하여, $La^{3+}$이 원형질막 및 액포막 $H^+-ATPase$ 활성을 모두 저해함을 확인하였다. 원형질막과 액포막 $H^+-ATPase$ 활성을 50% 저해하는 $La^{3+}$ 농도인 Ki 값은 각각 57, $78\;{\mu}M$이었다. $La^{3+}$에 의한 저해효과는 Triton X-100을 처리한 leaky 마이크로솜에서도 얻어져, $La^{3+}$이 이온채널의 존재와 관계없이 $H^+-ATPase$의 활성을 직접적으로 저해함을 확인하였다. 한편, Lak의 활성저해 효과는 ATP 농도 증가로 감소하였고, ATP의 효과는 농도 의존적으로 나타났으며, 7 mM ATP 의해 $La^{3+}$에 의한 $H^+-ATPase$ 활성 저해가 완전히 억제되었다. 이러한 결과로부터 $La^{3+}$은 원형질막과 액포막의 $H^+-ATPase$들에 결합하여 ATP 결합친화력을 감소시킴으로써 활성을 저해하며, 뿌리조직 $H^+-ATPase$의 활성조절제로 이용이 가능함을 확인하였다.

In order to find a chemical agent which is able to modulate the activity of $H^+-ATPase$, microsomal preparation was obtained from the root tissue of tomato plant and the effect of $La^{3+}$ was measured. The activities of plasma and vacuolar membrane $H^+-ATPase$ were analyzed by the inhibited activities using their specific inhibitors, vanadate and $NO_3-$, respectively. $La^{3+}$ inhibited microsomal ATPases in a dose-dependent manner and the inhibitory effect of $La^{3+}$ was suppressed by both vanadate and $NO_3-$, implying that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPase$. The Ki. values of $La^{3+}$which inhibit 50% of the activities of plasma and vacuolar membrane $H^+-ATPase$ were 57 and $78\;{\mu}M$, respectively. The $H^+-ATPase$ of the leaky microsomes made by the treatment of Triton X-100 were also inhibited by $La^{3+}$, suggesting that $La^{3+}$ directly inhibits both enzymes. Meanwhile, the inhibitory effect of $La^{3+}$ was decreased by increasing the concentration of ATP, The effect of ATP was also concentration-dependent and 7 mM ATP completely removed the inhibitory effect of $La^{3+}$. These results imply that $La^{3+}$ inhibits both plasma and vacuolar membrane $H^+-ATPases$ by decreasing the binding affinity of ATP and $La^{3+}$ can be used to control the activity or root $H^+-ATPases$.

키워드

참고문헌

  1. Morsomme, P. and Boutry, M. (2000) The plant plasma membrane $H^+-$ATPase: structure, function and regulation. Biochim. Biophys. Acta 1465, 1-16 https://doi.org/10.1016/S0005-2736(00)00128-0
  2. Garbarino, J. and DuPont, F. M. (l988) NaCl induces a $Na^+/H^+$ antiport in tonoplast vesicles from barley roots. Plant Physiol. 86, 231-236 https://doi.org/10.1104/pp.86.1.231
  3. McClure, P. R, Kochian, L. V, Spanswick, R. M. and Shaff, J. E. (1990) Evidence for cotransport of nitrate and protons in maize roots. I. Effects of nitrate on the membrane potential. Plant Physiol. 93, 281-289 https://doi.org/10.1104/pp.93.1.281
  4. Buckhout, T. J. (1994) Kinetic analysis of the plasma membrane sucrose-H' symporter from sugar beet (Beta vulgaris L.) leaves. Plant Physiol. 106, 991-998
  5. Brune, A, Gonzalez, P, Goren, R, Zehavi, U. and Echeverria, E. (1998) Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifolia) juice cells. J. Mernbr. Biol. 166, 197-203
  6. Sze, H. (1985) H+-translocatlng ATPases: advances using membrane vesicles. Ann. Rev. Plant Physiol. 36, 175-208 https://doi.org/10.1146/annurev.pp.36.060185.001135
  7. Martin, R. B. and Richardson, F. S. (1979) Lanthanides as probes for calcium in biological systems. Q. Rev. Biophys. 12, 181-209 https://doi.org/10.1017/S0033583500002754
  8. Girardet, J., Dupont, Y. and Lacapere, J. (1989) Evidence of a calcium-induced structural change in the ATP-binding site of the sarcoplasmic reticulum $Ca^{2+}-$ATPase using terbium formycin triphosphate as an analogue of Mg-ATP Eur. J. Biochern. 184, 131-140 https://doi.org/10.1111/j.1432-1033.1989.tb14999.x
  9. Fujimori, T. and Jencks, W. P. (1990) Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum ATPase by replacing magnesium as the catalytic ion. J. Biol. Chem. 265, 16262-16270
  10. Ogurusu, T., Wakabayashi, S. and Shigekawa, M. (1991) Functional characterization of lanthanide binding sites in the sarcoplasmic reticulum $Ca^{2+}-$ATPase: do lanthanide ions bind to the calcium transport site? Biochem. 30, 9966-9973 https://doi.org/10.1021/bi00105a022
  11. Evans, D. E. and Williams, L. E. (1998) P-type calcium ATPases in higher plants-biochemical, molecular and functional properties. Biochim. Biophys. Acta 1376, 1-25 https://doi.org/10.1016/S0304-4157(97)00009-9
  12. Raeburn, D. (1987) Calcium entry blocking drugs: their classification and sites of action in smooth muscle cells. Med. Biol. 65, 175-180
  13. Beedle, A. M., Hamid, J. and Zamponi, G. W. (2002) Inhibition of transiently expressed low- and high-voltage-activated calcium channels by trivalent metal cations. J. Membr. Biol. 187, 225-238 https://doi.org/10.1007/s00232-001-0166-2
  14. Gelli, A and Blumwald, E. (1997) Hyperpolarization-activated $Ca^{2+}-$permeable channels in the plasma membrane of tomato cells. J. Mernbr. BioI. 155, 35-45
  15. Lewis, B. D. and Spalding, E. P. (1998) Nonselective block by $La^{3+}$ of Arabidopsis ion channels involved in signa transduction. J. Mernbr. Biol. 162, 81-90
  16. Cho, K. H., Sakong, J. and Kim, Y. K. (1998) Characterization of microsomal ATPases prepared from tomato roots. Agric. Chern. Biotechnol. 41, 130-136
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chern. 193, 265-275
  18. Sommarin, M., Lundborg, T. and Kylin, A (1985) Comparison of K,Mg-ATPases in purified plasmalemma from wheat and oat: substrate specificities and effects of pH, temperature and inhibitors. Plant Physiol. 65, 27-32 https://doi.org/10.1111/j.1399-3054.1985.tb02354.x
  19. Gallagher, S. R. and Leonard, R. T. (1982) Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of com roots. Plant Physiol. 70, 1335-1340 https://doi.org/10.1104/pp.70.5.1335
  20. Niggli, V, Penniston, J. T. and Carafoli, E. (1979) Purification of the $(Ca^{2+}-Mg^{2+})$-ATPase from hurnan erythrocyte membranes using a calmodulin affinity column. J. Biol. Chern. 254, 99559958
  21. Shin, D. S., Cho, K. H. and Kim, Y. K. (1999) $Hg^{2+}$-induced reversible inhibitions of microsomal $H^+$-ATPases prepared from tomato roots. J. 10r. Soc. Agric. Chern. Biotechnol. 42, 298303
  22. Palmgren, M. G., Askerlund, P, Fredrikson, K., Widell, S., Sommarin, M. and Larsson, C. (1990) Sealed inside-out and right-side-out plasma membrane vesicles. Plant Physiol. 92, 871-880 https://doi.org/10.1104/pp.92.4.871
  23. Bennett, A. B., O'Neill, S. D. and Spanswick, R. M. (1984)$H^+$- ATPase activity from storage tissue of Beta vulgaris. Plant Physiol. 74, 538-544 https://doi.org/10.1104/pp.74.3.538
  24. Cho, K. H. (1997) Characterization of microsomal ATPases prepared from soybean roots and tomato roots. M.S. Thesis. Chungbuk National University, Cheongju, Korea
  25. Cho, K. H., Sakong, J. and Kim, Y. K. (2001) Inhibition of microsomal ATPases by high concentration of $Mg^{2+}$ in tracheal epithelial cells. Life Sci. 69, 2875-2886 https://doi.org/10.1016/S0024-3205(01)01358-3
  26. Larsson, C., Sommarin, M. and Widell, S. (1994) Isolation of highly purified plasma membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol. 228, 451-469 https://doi.org/10.1016/0076-6879(94)28046-0
  27. Henao, F., Orlowski, S., Merah, Z. and Champei1, P. (1992) The metal sites on sarcoplasmic reticulum membranes that bind lanthanide ions with the highest affinity are not the ATPase $Ca^{2+}$ transport sites. J. Biol. Chern. 267, 10302-10312