참고문헌
-
Amoroso S, Schmid-Antomarchi H, Fosset M, Lazdunski M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K
$^+$ channels. Science 247: 852-854, 1990 https://doi.org/10.1126/science.2305257 -
Ashcroft FM, Harrison DE, Ashcroft SJH. Glucose induces closure of single potassium channels in isolated rat pancreatic
$\beta$ -cells. Nature 312: 446-448, 1984 https://doi.org/10.1038/312446a0 - Ashcroft SJH, Ashcroft FM. Properties and functions of ATPsensitive K-channels. Cell Signalling 2: 197-214, 1990 https://doi.org/10.1016/0898-6568(90)90048-F
-
Ashcroft SJH, Rorsman P. Electrophysiology of the pancreeatic
$\beta$ - cell. Prog Biophys Mol Biol 54: 87-143, 1989 https://doi.org/10.1016/0079-6107(89)90013-8 -
Ashford MLJ, Boden PR, Treherne JM. Tolbutamide excites rat glucoreceptive ventromedial hypothalamic neurons by indirect inhibition of ATP-K
$^+$ channels. Br J Pharmacol 101: 531-540, 1990 https://doi.org/10.1111/j.1476-5381.1990.tb14116.x - Beech DJ, Zhang H, Nakao K, Bolton TB. K channel activation by nucleotide diphosphates and its inhibition by glibenclamid in vascular smooth muscle cells. Br J Pharmacol 110: 573-582, 1993 https://doi.org/10.1111/j.1476-5381.1993.tb13849.x
-
Bernardi H, De Weille JR, Epelbaum J, Mourre C, Amoroso S, Slama A, Fosset M, Lazdunski M. ATP-modulated K
$^+$ channels sensitive to anti diabetic sulfonylureas hormone release. Proc Natl Acad Sci USA 90: 1340-1344, 1993 https://doi.org/10.1073/pnas.90.4.1340 - Bonev AD, Nelson MT. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Am J Physiol (Cell Physiol) 264: C1190-C1200, 1993 https://doi.org/10.1152/ajpcell.1993.264.5.C1190
- Burton F, Dorstelmann U, Hutter OF. Single-channel activity in sacolemmal vesicles from human and mammalian muscles. Muscle Nerve 11: 1029-1038, 1988. https://doi.org/10.1002/mus.880111004
-
Chung S, Jung W, Uhm DY, Ha TS, Park CS. Glutathione potentiates cloned rat brain large conductance Ca2
$^{+-}$ activated K$^+$ channels (rSlo). Neurosci Lett 318: 9-12, 2002 https://doi.org/10.1016/S0304-3940(01)02435-1 -
Clapp LH, Gurney AM. ATP-sensitive K
$^+$ channels regulate resting potential of pulmonary arterial smooth muscle. Am J Physiol (Heart Circ Physiol) 262: H916-H920, 1992 https://doi.org/10.1152/ajpheart.1992.262.3.H916 - Coetzee WA, Nakamura TY, Faivre JF. Effects of thiol-modifying agents on KATP channels in guinea pig ventricular cells. Am J Physiol 269: H1625-33, 1995
-
Cole WP. ATP-sensitive K
$^+$ channels in cardiac ischemia: an endogenous mechanism for protection of the heart. Cardiovasc Drugs Ther 7: 527-537, 1993 https://doi.org/10.1007/BF00877618 - Dart C, Standen NB. Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol Lond 471: 767-786, 1994
- Daut J, Kleiber HG, Cyrys S, Noack T. KATP channels and basal coronary vascular tone. Cardiovasc Res 28: 811-817, 1994 https://doi.org/10.1093/cvr/28.6.811
- Daut J, Maire-Rudolph W, Von Beckerath N, Mehrke G, Gunther K, Goedel-meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247: 1341-1344, 1990 https://doi.org/10.1126/science.2107575
-
Davies NW. Modulation of ATP-sensitive K
$^+$ channels in skeletal muscle by intracellular protons. Nature Lond 343: 375-377, 1990 https://doi.org/10.1038/343375a0 - Downey JM. Ischemic preconditioning: nature's own cardioprotective intervation. Trends Cardiovasc Med 2: 170-176, 1992 https://doi.org/10.1016/1050-1738(92)90045-T
- Dunne WJ, Peterson OP. Potassium selective ion channels in insulin secreting cells: physiology, pharmacology and their role in insulin secreting cells. Biochem Biophys Acta 1071: 77-82, 1981
- Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 33: 597-637, 1993 https://doi.org/10.1146/annurev.pa.33.040193.003121
- Elliot AC, Smith GL, Allen DG. Simultaneous measurements of action potential duration and intracellular ATP in isolated ferret hearts exposed to cyanide. Circ Res 64: 583-591, 1989 https://doi.org/10.1161/01.RES.64.3.583
- Escande D, Henry P. Potassium channels as pharmacological targets in cardiovasculat medicine. Eur Heart J 14, Suppl. B: 2-9, 1993
- Faivre JF, Findlay I. Action potential duration and activation of the ATP-sensitive potassium current in isolated guinea pig ventricular myocytes. Biochem Biophys Acta 1029: 167-172, 1990 https://doi.org/10.1016/0005-2736(90)90450-3
-
Findlay I. The ATP-sensitive K
$^+$ channel of cardiac muscle and action potential shortening during metabolic stress. Cardiovasc Res 28: 760-761, 1994 https://doi.org/10.1093/cvr/28.6.760 - Findlay I, Deroubaix E, Guiraudou P, Coraboeuf E. Effects of activation of ATP-sensitive K+ channels in mammalian ventricular myocytes. Am J Physiol (Heart Circ Physiol) 257: H1551-H1559, 1989 https://doi.org/10.1152/ajpheart.1989.257.5.H1551
-
Fosset M, De Weille JR, Green RD, Schmid-Antonmarchi & Lazdunski. Antidiabetic sulfonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K
$^+$ channels. J Biol Chem 263: 7933-7936, 1988 -
Fosett M, Schmid-Antomarchi H, De Weille J, Lazdunski M. Somatostatin activates glibenclamide-sensitive and ATPregulate K
$^+$ chnnels in insulinoma cells via G-protein. FEBS Letter 242: 94-96, 1988 https://doi.org/10.1016/0014-5793(88)80992-X - Gasser RNA, Vaughan-Jones RD. Mechanism of potassium efflux and action potential shortening during ischemia in isolated mammalian cardiac muscle. J Physiol Lond 431: 713-741, 1990 https://doi.org/10.1113/jphysiol.1990.sp018356
-
Gong LW, Gao TM, Huang H, Zhuang ZY, Tong Z. Transient forebrain ischemia induces persistent hyperactivity of large conductance Ca2
$^+$ -activated potassium channels via oxidation modulation in rat hippocampal CA1 pyramidal neurons. Eur J Neurosci 15: 779-83, 2002 https://doi.org/10.1046/j.1460-9568.2002.01908.x -
Gopalakrishnan M, Janis RA, Triggle DJ. ATP-sensitive K
$^+$ channels: pharmacologic properties, regulation, and therapeutic potential. Drug Dev Res 28: 95-127, 1993 https://doi.org/10.1002/ddr.430280202 - Gross GJ, Auchampach JA. Role of ATP-dependent potassium channels in myocardial ischaemia. Cardiovasc Res 26: 1011-1016, 1992 https://doi.org/10.1093/cvr/26.11.1011
- Grover GJ. Protective effects of ATP sensitive potassium channels in myocardial ischemia. Cardiovasc Res 28: 778-782, 1994 https://doi.org/10.1093/cvr/28.6.778
- Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATPsensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation 86: 1310-1316, 1993
-
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high resolution current recordings from cells and cell-free membrane patches. Pf
$\"{u}$ lgers Arch 391: 85 -100, 1981 https://doi.org/10.1007/BF00656997 - Han J, Kim N, Kim E, Ho WK, Earm YE. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. J Biol Chem 276: 22140- 22147, 2001 https://doi.org/10.1074/jbc.M010103200
- Han J, Kim N, Joo H, Kim E. Ketamine abolishes ischemic preconditioning through inhibition of ATP-sensitive K+ channels in rabbit hearts. Am J Physiol 283: H13-H21, 2002a
- Han J, Kim N, Park J, Seog D, Joo H, Kim E. Opening of mitochondrial ATP-sensitive potassium channels evokes oxygen radical generation in rabbit heart slices. J Biochem 131: 721-727, 2002b https://doi.org/10.1093/oxfordjournals.jbchem.a003157
-
Han J, Kim N, Joo H, Kim E. ATP-sensitive K
$^+$ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol 283: H1545-H1554, 2002c -
Han J, So I, Kim EY, Earm YE. ATP-sensitive potassium channels are modulated by intracellular lactate in rabbit ventricular myocytes. Pf
$\"{u}$ lgers Arch 425: 546-548, 1993 https://doi.org/10.1007/BF00374883 -
Honore E, Lazdunski M. Single-channel properties and regulation of pinacidal/glibenclamide-sensitive K
$^+$ channels in follicular cells from Xenopus oocyte. Pfluegers Arch 424: 113-121, 1993 https://doi.org/10.1007/BF00374601 -
Islam MS, Berggren PO, Larsson O. Thiol oxidation induces rapid and reversible closure of the ATP-regulated K
$^+$ channel in the pancreatic$\beta$ -cell. FEBS Letters 319: 128-132, 1993 https://doi.org/10.1016/0014-5793(93)80051-U - Jackson WF. Arteriolar tone is determined by activity of ATPsensitive potassium channels. Am J Physiol (Heart Circ Physiol) 265: H1797-H1803, 1993 https://doi.org/10.1152/ajpheart.1993.265.5.H1797
-
Jonas P, Koh DS, Kampe K, Hermsteiner M, Vogel W. ATPsensitive and Ca-activated K
$^+$ channels in vertebrate axons: novel links between metabolism and excitability. Pfluegers Arch 418: 68-73, 1991 https://doi.org/10.1007/BF00370453 -
Kim DH, Duff RA. Regulation of ATP-sensitive K
$^+$ channels in cardiac myocytes by free fatty acids. Circ Res 67: 1040-1046, 1990 https://doi.org/10.1161/01.RES.67.4.1040 -
Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling or ATP-sensitive K
$^+$ channels to A1-receptors by G proteins in rat ventr5icular myocytes. Am J Physiol (Heart Circ Physiol) 259: H820-H826, 1990 https://doi.org/10.1152/ajpheart.1990.259.3.H820 - Kerst G, Brousos H, Schreiber R, Nitschke R, Hug MJ, Greger R, Bleich M. The oxidant thimerosal modulates gating behavior of KCNQ1 by interaction with the channel outer shell. J Membr Biol 186: 89-100, 2002 https://doi.org/10.1007/s00232-001-0138-6
-
Krippeitdrrews P, Britsch S, Lang F, Drews G. Effects of SH group reagents on Ca2
$^+$ and K$^+$ channel currents of pancreatic$\beta$ -cells. Biochem Biophys Res Commun 200: 860-866, 1994 https://doi.org/10.1006/bbrc.1994.1530 - Lazdunski M, Bernardi H, De Weille JR, Mourre C, Fosst M. Agonist and antagonist of ATP-sensitive potassium channels. Adv Nephrol 21: 195-202, 1992
-
Lederer WJ, Nichols CJ. Nucleotide modulation of the activity of rat heart ATP-sensitive K
$^+$ channels in isolated membrane patches. J Physiol Lond 419: 195-211, 1989 - Lee K, Ozanne SE, Hales CN, Ashford ML. Effects of chemical modification of amino and thiol groups on KATP channel function and sulfonylurea binding in CRI-G1 insulin-secreting cells. J Membr Biol 139: 167-81, 1994
- Means GE, Feeney RE. Chemical modification of proteins. San Francisco. CA: Holden-Day, 1971
- Mourre C, Ben Ari Y, Bernardi H, Fosset M, Lazdunski M. Antidiabetic sulfonylureas: localization of binding sites I the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Res 486: 159-164, 1989 https://doi.org/10.1016/0006-8993(89)91288-2
- Nelson MT. Ca2+ activated potassium channels and ATP-sensitive potassium channels a modulators of vascular tone. Trend Cardiovasc Med 3: 54-60, 1993 https://doi.org/10.1016/1050-1738(93)90037-7
-
Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB. Arterial dilations in response to calcitonin gene-related peptide involve activation of K
$^+$ channels. Nature Lond 344: 770-773, 1990 https://doi.org/10.1038/344770a0 -
Nichols CG, Lederer WJ. Adenosine triphosphate sensitive K
$^+$ channels in the cardiovascular system. Am J Physiol (Heart Circ Physiol) 261: H1675-H1686, 1991 https://doi.org/10.1152/ajpheart.1991.261.6.H1675 -
Nichols CG, Ripoll C, Lederer WJ. ATP-sensitive K
$^+$ channel modulation of the guinea pig ventricular action potential and contraction. Circ Res 68: 280-287, 1991 https://doi.org/10.1161/01.RES.68.1.280 -
Noma A. ATP-regulated K
$^+$ channels in cardiac muscle. Nature 305: 147-148, 1983 https://doi.org/10.1038/305147a0 -
Ohno-Shosaku T, Yamamoto C. Identification of an ATP-sensitive K
$^+$ channel in rat cultured cortical neurons. Pfluegers Arch 422: 260-266, 1992 https://doi.org/10.1007/BF00376211 - Paratt JR, Kane KA. KATP channels in ischemic preconditioning. Cardiovasc Res 28: 783-787, 1994 https://doi.org/10.1093/cvr/28.6.783
-
Post JA, Weir EK, Archer SL, Hume JR. Redox regulation of K
$^+$ channels and hypoxic pulmonary vasoconstriction. In: Weir EK, Hume JR, Reeves JT. Ion Flux in Pulmonary Vascular Control. New York: Plenum P. 189-204. 1994 - Quast U. Potassium channel openers: pharmacological and clinical aspects. Fundam Clin Pharmacol 6: 279-293, 1992 https://doi.org/10.1111/j.1472-8206.1992.tb00122.x
- Quayle JM, Standen NB. KATP channels in vascular smooth muscle. Cardiovasc Res 28: 797-804, 1994
- Ruppersberg JP, Stocker M, Pongs O, Heiemann SH, Frank R, Koenen M. Regulation of fact inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature Lond 352: 711-714, 1991 https://doi.org/10.1038/352711a0
- Sargent CA, Sleph PG, Dzwonczyk S, Smith MA, Normandin D, Antonaccio MJ, Grover GJ. Cardioprotection in ischemic rat hearts with the SH-containing angiotensin-converting enzyme inhibitor zofenopril: possible involvement of the ATP-sensitive potassium channel. J Pharmacol Exp Ther 265: 609-618, 1993
- Singh A, Lee KJ, Lee CY, Goldfarb RD, Tsan M. Relation between myocardial glutathione content and extent of ischemiareperfusion injury. Circulation 80: 1795-1804, 1989 https://doi.org/10.1161/01.CIR.80.6.1795
- Spruce AE, Standen NB, Stanfield PR. Voltage-dependent ATPsensitive potassium channels of skeletal muscle membrane. Nature 316: 736-738, 1985 https://doi.org/10.1038/316736a0
-
Song DK, Park WK, Bae JH, Park MK, Kim SJ, Ho WK, Earm YE. Reduced dihydroxyacetone sensitivity and normal sensitivity to glyceraldehydes and oxidizing agent of ATP-sensitive K
$^+$ channels of pancreatic beta cells in NIDDM rats. J Korean Med Sci 12: 286-292, 1997 https://doi.org/10.3346/jkms.1997.12.4.286 - Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive potassium channels in arterial smooth muscle. Science 245: 177- 180, 1989 https://doi.org/10.1126/science.2501869
- Tokube K, Kiyosue T, Arita M. Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction. Am J Physiol 271: H478-H489, 1996 https://doi.org/10.1152/ajpcell.1996.271.2.C478
- Tokube K, Kiyosue T, Arita M. Effects of hydroxyl radicals on KATP channels in guinea-pig ventricular myocytes. Pflugers Arch 437, 155-157, 1998 https://doi.org/10.1007/s004240050760
- Trapp S, Tucker SJ, Ashcroft FM. Mechanism of ATP-sensitive K channel inhibition by thiol modification. J Gen Physiol 112: 325-332, 1998 https://doi.org/10.1085/jgp.112.3.325
- Tricarico D, Camerino DC. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties. Mol Pharmacol 46: 754-761, 1994
- Tupling R, Green H. Silver ions induce Ca2+ release from the SR in vitro by acting on the Ca2+ release channel and the Ca2+ pump. J Appl Physiol 92: 1603-1610, 2002 https://doi.org/10.1152/japplphysiol.00756.2001
- Tsuchiya K, Wang W, Giebisch G, Welling P. ATP is a couplingmodulator of parallel Na/K ATPase K channel activity in the renal proximal tubule. Proc Natl Acad Sci USA 89: 6418-6422, 1992 https://doi.org/10.1073/pnas.89.14.6418
- Weik R, Neumcke B. ATP-sensitive potassium channels in adult mouse skeletal muscle: characterization of the ATP-binding site. J Membrane Biol 110: 217-226, 1989 https://doi.org/10.1007/BF01869152
-
Wibrand F, Honore E, Lazdunski M. Opening of glibenclamidesensitive K
$^+$ channels in follicular cells promotes Xenopus oocyte maturation. Proc Natl Acad Sci USA 89: 5133-5137, 1992 https://doi.org/10.1073/pnas.89.11.5133 -
Wilde AAM. Role of ATP-sensitive K
$^+$ channel current in ischemic arrhymias. Cardiovasc Drugs Ther 7: 521-526, 1993 https://doi.org/10.1007/BF00877617 -
Wilde AAM, Escande D, Schumacher A, Thuringer D, Mestre M, Fiolet JWT, Janse MJ. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive K
$^+$ channel. Circ Res 67: 835-843, 1990 https://doi.org/10.1161/01.RES.67.4.835 -
Wilde AAM, Janse MJ. Electrophysiological effects of ATP-sensitive K
$^+$ channel modulation: implications for arrythmogenesis. Cardiovasc Res 28: 16-24, 1994 https://doi.org/10.1093/cvr/28.1.16 - Yao Z, Cavero I, Gross G. Activation of cardiac KATP channels: an endogenous protective mechanism during repetitive ischemia. Am J Physiol (Heart Circ Physiol) 264: H495-H505, 1993 https://doi.org/10.1152/ajpheart.1993.264.2.H495
- Ziegler DM. Role of reversible oxidation-reduction of enzyme thiolsdisulfides in metabolic regulation. Annu Rev Biochem 54: 305-329, 1985 https://doi.org/10.1146/annurev.bi.54.070185.001513