DOI QR코드

DOI QR Code

Theoretical Investigation of Triple Bonding between Transition Metal and Main Group Elements in (η5-C5H5)(CO)2M≡ER (M = Cr, Mo, W; E = Si, Ge, Sn, Pb; R = Terphenyl Groups)

  • Takagi, Nozomi (Department of Theoretical Studies, Institute of Molecular Science) ;
  • Yamazaki, Kentaro (Department of Theoretical Studies, Institute of Molecular Science) ;
  • Nagase, Shigeru (Department of Theoretical Studies, Institute of Molecular Science)
  • Published : 2003.06.20

Abstract

To extend the knowledge of triple bonding between group 6 transition metal and heavier group 14 elements, the structural and bonding aspects of ($η^5-C_5H_5$)$(CO)_2$M≡ER (M = Cr, Mo, W; E = Si, Ge, Sn, Pb) are investigated by hybrid density functional calculations at the B3PW91 level. Substituent effects are also investigated with R = H, Me, $SiH_3$, Ph, $C_6H_3-2,6-Ph_2$, $C_6H_3-2,6-(C_6H_2-2,4,6-Me_3)_2$, and $C_6H_3-2,6-(C_6H_2-2,4,6- iPr_3)_2$.

Keywords

References

  1. West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343. https://doi.org/10.1126/science.214.4527.1343
  2. Okazaki, R.; West, R. Adv. Organomet.Chem. 1996, 39, 231. https://doi.org/10.1016/S0065-3055(08)60469-4
  3. Power, P. P. Chem. Rev. 1999, 99, 3463. https://doi.org/10.1021/cr9408989
  4. Kobayashi, K.; Nagase, S. Organometallics 1997, 16, 2489. https://doi.org/10.1021/om970232f
  5. Nagase, S.; Kobayashi, K.; Takagi, N. J. Organomet. Chem.2000, 611, 264. https://doi.org/10.1016/S0022-328X(00)00489-7
  6. Kobayashi, K.; Takagi, N.; Nagase, S. Organometallics 2001, 20, 234. https://doi.org/10.1021/om000824p
  7. Takagi, N.; Nagase, S. Chem. Lett. 2001, 966.
  8. Takagi, N.; Nagase, S. Organometallics 2001, 20, 5498. https://doi.org/10.1021/om010669u
  9. Takagi, N.; Nagase, S. Eur. J. Inorg. Chem. 2002, 2775.
  10. Sekiguchi, A.; Zigler, S. S.; West, R. J. Am.Chem. Soc. 1986, 108, 4241. https://doi.org/10.1021/ja00274a075
  11. Sekiguchi, A.; Gillete, G. R.; West, R. Organometallics 1988, 7, 1226. https://doi.org/10.1021/om00095a035
  12. Pietschnig, R.; West, R.; Powell, D. R. Organometallics 2000, 19, 2724. https://doi.org/10.1021/om990924z
  13. Olmstead, M. M.;Simons, R. S.; Power, P. P. J. Am. Chem. Soc. 1997, 199, 11705.
  14. Pu, L.; Senge, M. O.; Olmstead, M. M.; Power, P. P. J. Am.Chem. Soc. 1998, 120, 12682. https://doi.org/10.1021/ja982717g
  15. Stender, M.; Phillips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem. Int. Ed. 2002, 41, 1785. https://doi.org/10.1002/1521-3773(20020517)41:10<1785::AID-ANIE1785>3.0.CO;2-6
  16. Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am.Chem. Soc. 2002, 124, 5930. https://doi.org/10.1021/ja0257164
  17. Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524. https://doi.org/10.1021/ja993346m
  18. Klinkhammer, K. W. Angew. Chem. Int. Ed. Engl. 1997, 36,2320. https://doi.org/10.1002/anie.199723201
  19. Jutzi, P. Angew. Chem. Int. Ed. 2000, 39, 3797. https://doi.org/10.1002/1521-3773(20001103)39:21<3797::AID-ANIE3797>3.0.CO;2-8
  20. Weidenbruch, M. J. Organomet. Chem. 2002, 646, 39. https://doi.org/10.1016/S0022-328X(01)01262-1
  21. Simons, R. S.; Power, P. P. J. Am. Chem. Soc. 1996, 118,11966. https://doi.org/10.1021/ja963132u
  22. Pu, L.; Twamley, B.; Haubrich, S. T.; Olmstead, M. M.;Mork, B. V.; Simons, R. S.;Power, P. P. J. Am. Chem. Soc. 2000,122, 650. https://doi.org/10.1021/ja992937+
  23. Twamley, B.; Haubrich, S. T.; Power, P. P. Adv. Organomet.Chem. 1999, 44, 1. https://doi.org/10.1016/S0065-3055(08)60619-X
  24. Clyburne, J. A. C.; McMullen, N. Coord.Chem. Rev. 2000, 210, 73. https://doi.org/10.1016/S0010-8545(00)00317-9
  25. Robinson, G. H. Acc. Chem. Res. 1999, 32, 773. https://doi.org/10.1021/ar980135y
  26. Takagi, N.; Schmidt, M. W.; Nagase, S. Organometallics 2001, 20, 1646. https://doi.org/10.1021/om0009841
  27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; MontgomeryJr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres,J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J.A. Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, 1998.
  28. Becke, A. D. Phys. Rev. 1988, A38, 3098.
  29. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  30. Perdew, J. P.; Wang, Y. Phys. Rev. 1992, B45, 13244.
  31. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. https://doi.org/10.1063/1.448800
  32. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  33. Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm,E.; Sakai, Y.; Tatewaki, H. Gaussian Basis Sets for MolecularCalculations; Elsevier: Amsterdam, 1984.
  34. Francl, M. N.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon,M. S.; Defrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654. https://doi.org/10.1063/1.444267
  35. Klinkhammer, K. Polyhedron 2002, 21, 587. https://doi.org/10.1016/S0277-5387(01)01029-4
  36. Pu, L.; Power, P. P.; Boltes, I.; Herbst-Irmer, R. Organometallics2000, 19, 352. https://doi.org/10.1021/om990774s
  37. Takagi, N.; Nagase, S. to be published.
  38. Eichler, B. E.; Phillips, A. D.; Haubrich, S. T.; Mork, B. V.; Power,P. P. Organometallics 2002, 21, 5622. https://doi.org/10.1021/om020583g
  39. Filippou, A. C.; Philippopoulos, A. I.; Portius, P.; Neumann, D.U. Angew. Chem. Int. Ed. 2000, 39, 2778. https://doi.org/10.1002/1521-3773(20000804)39:15<2778::AID-ANIE2778>3.0.CO;2-2
  40. Filippou, A. C.; Portius, P.; Philippopoulos, A. I. Organometallics 2002, 21,653. https://doi.org/10.1021/om010785x
  41. Filippou, A. C.; Portius, P.; Philippopoulos, A. I.; Rohde, H.Angew. Chem. Int. Ed. 2003, 42, 445. https://doi.org/10.1002/anie.200390135
  42. Mork, B. V.; Tilley, T. D. Angew. Chem. Int. Ed. 2003, 42, 357. https://doi.org/10.1002/anie.200390116
  43. Pandey, K. K.; Lein, M.; Frenking, G. J. Am. Chem. Soc. 2003,125, 1660. https://doi.org/10.1021/ja020974m

Cited by

  1. (M = Mo, W; E = Si, Ge, Sn, Pb): A Theoretical Study vol.50, pp.15, 2011, https://doi.org/10.1021/ic2005908
  2. , Mes = 2,4,6-Trimethylphenyl) vol.135, pp.31, 2013, https://doi.org/10.1021/ja406290t
  3. Nature of E–E bonds in heavier ditetrel alkyne analogues ArEEAr (Ar = C6H3-2,6(C6H3-2,6-Pri2)2; E = Si, Ge, Sn, and Pb) vol.37, pp.10, 2013, https://doi.org/10.1039/c3nj00600j
  4. Sn Mössbauer Parameters for M≡SnR Bonding in Filippou’s Stannylidyne Complexes of Molybdenum and Tungsten vol.54, pp.22, 2015, https://doi.org/10.1021/acs.inorgchem.5b01921
  5. X)(CO) Complexes vol.64, pp.4, 2017, https://doi.org/10.1002/jccs.201600855
  6. ″-hydridotris(3,5-dimethyl-1-pyrazolyl)borate) pp.1520-6041, 2018, https://doi.org/10.1021/acs.organomet.7b00665
  7. Theory and Calculations of Molecules Containing Heavier Main Group Elements and Fullerenes Encaging Transition Metals: Interplay with Experiment vol.87, pp.2, 2014, https://doi.org/10.1246/bcsj.20130266
  8. [{2,6-(Me2NCH2)2C6H3}Sn]2: An Intramolecularly Coordinated Diorganodistannyne vol.47, pp.9, 2008, https://doi.org/10.1002/anie.200704635
  9. Intermolecular ligand exchange in alkyltin trihalides: Semiempirical and density functional theory calculations vol.761, pp.1, 2003, https://doi.org/10.1016/j.theochem.2005.12.011
  10. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  11. [{2,6-(Me2NCH2)2C6H3}Sn]2: ein intramolekular koordiniertes Diorganodistannin vol.120, pp.9, 2008, https://doi.org/10.1002/ange.200704635
  12. Metal–Silicon Triple Bonds: The Molybdenum Silylidyne Complex [Cp(CO)2Mo≡Si-R] vol.49, pp.19, 2003, https://doi.org/10.1002/anie.201000837
  13. Metall-Silicium-Dreifachbindungen: Synthese und Charakterisierung des Silylidin-Komplexes [Cp(CO)2Mo≡Si-R] vol.122, pp.19, 2003, https://doi.org/10.1002/ange.201000837
  14. Open‐Shell Complexes Containing Metal–Germanium Triple Bonds vol.124, pp.3, 2003, https://doi.org/10.1002/ange.201107120
  15. Open‐Shell Complexes Containing Metal–Germanium Triple Bonds vol.51, pp.3, 2003, https://doi.org/10.1002/anie.201107120
  16. Theoretical investigation of M≡E bonds in transition metal–ylidyne complexes trans-[H(PMe3)4M≡ER] (M = Mo, W; E = Si, Ge, Sn, vol.702, pp.None, 2003, https://doi.org/10.1016/j.jorganchem.2011.12.026
  17. Insights into the nature of ME bonds in [(PMe3)4ME(Mes)]+ (M = Mo, W) and [(PMe3)5WE(Mes)]+: a dispersion-corrected DFT study vol.4, pp.25, 2003, https://doi.org/10.1039/c3ra47331g
  18. Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η5-C5H5)(CO)2M&z.tbd;EN( vol.43, pp.26, 2014, https://doi.org/10.1039/c3dt53632g
  19. Metathetical Exchange between Metal-Metal Triple Bonds vol.142, pp.5, 2003, https://doi.org/10.1021/jacs.9b13604