DOI QR코드

DOI QR Code

Two-color Transient Grating Spectroscopy of a Two-level System

  • Kwak, Kyoung-Won (Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University) ;
  • Cho, Min-Haeng (Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University) ;
  • Fleming, Graham R. (Department of Chemistry and Center for Multidimensional Spectroscopy, Korea University) ;
  • Agarwal, Ritesh (Department of Chemistry, University of California, Berkeley and Physical Biosciences Division,Lawrence Berkeley National Laboratory) ;
  • Prall, Bradley S. (Department of Chemistry, University of California, Berkeley and Physical Biosciences Division,Lawrence Berkeley National Laboratory)
  • Published : 2003.08.20

Abstract

A theoretical description and experimental demonstration of homodyne-detected two-color transient grating (2-C TG) signal are presented. By treating the coupled bath degrees of freedom as a collection of harmonic oscillators and using a short-time expansion method, approximated nonlinear response functions were obtained. An analytic expression for the two-color transient grating signal was obtained by carrying out relevant Gaussian integrals. The initial rising and decaying parts of the 2-C TG signal is shown to be critically dependent on the ultrafast inertial component of the solvation correlation function. The experimental results confirm the predictions of the theoretical model.

Keywords

References

  1. Salcedo, J.; Zorabedian, P.; Hayward, G.; Siegman, A. E.; Fayer,M. D.; Dlott, D. J. Opt. Soc. Amer. 1976, 66, 1074.
  2. Andrews, J. R.; Hochstrasser, R. M. Chem. Phys. Lett. 1980, 76,213. https://doi.org/10.1016/0009-2614(80)87005-9
  3. Deeg, F. W.; Fayer, M. D. J. Chem. Phys. 1989, 91, 2269. https://doi.org/10.1063/1.457034
  4. Goldberg, S. Y.; Bart, E.; Meltsin, A.; Fainberg, B. D.; Huppert,D. Chem. Phys. 1994, 183, 217. https://doi.org/10.1016/0301-0104(90)00097-5
  5. Joo, T.; Jia, Y.; Yu, J.-Y.; Lang, M. J.; Fleming, G. R. J. Chem.Phys. 1996, 104, 6089. https://doi.org/10.1063/1.471276
  6. Xu, Q. H.; Ma, Y. Z.; Fleming, G. R. J. Phys. Chem. A 2002, 106,10755. https://doi.org/10.1021/jp014714n
  7. Duppen, K.; Weiterkamp, D. P.; Weirsma, D. A. Chem. Phys. Lett.1984, 108, 551. https://doi.org/10.1016/0009-2614(84)85052-6
  8. Dadusc, G.; Ogilvie, J. P.; Schulenburg, P.; Marvet, U.; Miller, R.J. D. Proc. Natl. Acad. Sci. USA 2001, 98, 6119.
  9. Mukamel, S. Principles of Nonlinear Optical Spectroscopy;Oxford University Press: New York, 1995.
  10. Yan, Y. J.; Mukamel, S. Phys. Rev. A 1990, 41, 6485. https://doi.org/10.1103/PhysRevA.41.6485
  11. Cho, M.; Yu, J.-Y.; Joo, T.; Nagasawa, Y.; Passino, S. A.; Fleming,G. R. J. Phys. Chem. 1996, 100, 11944. https://doi.org/10.1021/jp9601983
  12. Handbook of Mathematical Functions; Abramowitz, M.; Stegun,I. A., Eds; Dover Publications INC.: New York, 1972.
  13. Cho, M.; Fleming, G. R.; Mukamel, S. J. Chem. Phys. 1993, 98,5314. https://doi.org/10.1063/1.464931
  14. Fleming, G. R.; Cho, M. Ann. Rev. Phys. Chem. 1996, 47, 103.
  15. Cho, M.; Fleming, G. R. Adv. Chem. Phys. 1999, 107, 311. https://doi.org/10.1002/9780470141663.ch5
  16. Agarwal, R.; Prall, B. S.; Rizvi, A. H.; Yang, M.; Fleming, G. R. J.Chem. Phys. 2002, 116, 6243. https://doi.org/10.1063/1.1459414
  17. Fleming, G. R.; Yang, M.; Agarwal, R.; Prall, B. S.; Kaufman, L.J.; Neuwahl, F. Bull. Korean Chem. Soc. 2003, 24(8), 1081. https://doi.org/10.5012/bkcs.2003.24.8.1081

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450