DOI QR코드

DOI QR Code

The Electrochemical Properties and Mechanism of Formation of Anodic Oxide Films on Mg-Al Alloys

  • Published : 2003.07.20

Abstract

The electrochemical properties and the mechanism of formation of anodic oxide films on Mg alloys containing 0-15 mass% Al, when anodized in NaOH solution, were investigated by focusing on the effects of anodizing potential, Al content, and anodizing time. The intensity ratio of Mg(OH)₂ in the XRD analysis decreased with increasing applied potential, while that of MgO increased. Mg(OH)₂ was barely detected at 80 V, while MgO was readily detected. The anti-corrosion properties of anodized specimens at each constant potential were better than those of non-anodized specimens. The specimen anodized at an applied potential of 3 V had the best anti-corrosion property. The intensity ratio of the β phase increased with aluminum content in Mg-Al alloys. During anodizing, the active dissolution reaction occurred preferentially in β phase until about 4 min, and then the current density increased gradually until 7 min. The dissolution reaction progressed in α phase, which had a lower Al content. In the anodic polarization test in 0.017 mol·$dm^{-3}$ NaCl and 0.1 mol·$dm^{-3}$ Na₂SO₄ at 298 K, the current density of Mg-15 mass% Al alloy anodized for 10 min increased, since the anodic film that forms on the α phase is a non-compacted film. The anodic film on the α phase at 30 min was a compact film as compared with that at 10 min.

Keywords

References

  1. Suzuki, K. Alutopia 2000, 5, 40.
  2. The European Parliament and Council; Draft proposal for a directon the restriction of the use of certain hazardous substances inelectrical and electronic equipment, June 2000.
  3. Kunieda, N. 107th Meeting of the Surface Finishing Society ofJapan, 2003; p 296.
  4. Kim, S. J.; Okido, M. Sealing improved film properties afteranodizing of Mg-Al alloys, Bull. Korea Chem. Soc. submitted.
  5. Kim, S. J.; Okido, M.; Ichino, R.; Mizutani, Y.; Tanikawa, S.;Hasegawa, H. Materials Transactions 2003, 44, 1036. https://doi.org/10.2320/matertrans.44.1036
  6. Kim, S. J.; Zhou, T.; Ichino, R.; Okido, M.; Tanikawa, S. Metalsand Materials International 2003, 9, 207. https://doi.org/10.1007/BF03027279
  7. Kim, S. J.; Hara, R.; Ichino, R.; Okido, M.; Wada, N. MaterialsTransactions 2003, 44, 782. https://doi.org/10.2320/matertrans.44.782
  8. Emley, E. F. Principle of Magnesium Technology; PergamonPress: London, 1966; p 122.
  9. Huber, K. J. Electrochem. Soc. 1953, 100, 376. https://doi.org/10.1149/1.2781135
  10. Evangelides, H. A. Metal Finishing 1951, 7, 56.
  11. Ono, S.; Asami, K.; Osaka, T.; Masuko, N. J. Electrochem. Soc.1996, 143, L 62. https://doi.org/10.1149/1.1836533
  12. Khaselev, O.; Yahalon, J. J. Electrochem. Soc. 1998, 145, 190. https://doi.org/10.1149/1.1838234
  13. Khaselev, O.; Yahalon, J. Corrosion Sci. 1998, 40, 1149. https://doi.org/10.1016/S0010-938X(98)00019-5
  14. Oh, H. J.; Chi, C. S. Bull. Korean Chem. Soc. 2000, 21, 193.
  15. Ono, S.; Kijima, H.; Masuko, N. J. Japan Institute of Light Metals2002, 52, 115. https://doi.org/10.2464/jilm.52.115
  16. Ono, S.; Kijima, H.; Masuko, N. J. of the Surface FinishingSociety of Japan 2000, 51, 1168. https://doi.org/10.4139/sfj.51.1168
  17. Mizutani, Y.; Kim, S. J.; Ichino, R.; Okido, M. J. Surf. & CoatingTech. 2003, 169-170, 143.
  18. Lunder, O.; Lein, J. E.; Aune, T. K.; Nisancioglu, K. Corrosion1989, 45, 741. https://doi.org/10.5006/1.3585029
  19. Makar, G. L.; Kruger, J. J. Electrochem. Soc. 1990, 137, 414. https://doi.org/10.1149/1.2086455
  20. Zhang, Y.; Yan, C.; Wang, F.; Lou, H.; Cao, C. J. Surf. & CoatingTech. 2002, 161, 36. https://doi.org/10.1016/S0257-8972(02)00342-0
  21. Khaselev, O.; Weiss, D.; Yahalon, J. J Electrochem. Soc. 1999,146, 1757. https://doi.org/10.1149/1.1391838
  22. Khaselev, O.; Weiss, D.; Yahalon, J. Corrosion Sci. 2001, 43,1295. https://doi.org/10.1016/S0010-938X(00)00116-5

Cited by

  1. Effect of Anodizing Potential on the Surface Morphology and Corrosion Property of AZ31 Magnesium Alloy vol.51, pp.6, 2010, https://doi.org/10.2320/matertrans.M2009380
  2. Effects of Current Density on the Formation of Anodic Oxide Films on AZ91 vol.510-511, pp.1662-9752, 2006, https://doi.org/10.4028/www.scientific.net/MSF.510-511.166
  3. Effects of Anodizing Time on Anodizing of Mg-Al Alloy in Alkaline Solution vol.510-511, pp.1662-9752, 2006, https://doi.org/10.4028/www.scientific.net/MSF.510-511.686
  4. Nature of Surface Film Formed on Mg Exposed to 1 M NaOH vol.160, pp.1, 2013, https://doi.org/10.1149/2.018302jes
  5. Sealing effects of anodic oxide films formed on Mg-Al alloys vol.21, pp.4, 2004, https://doi.org/10.1007/BF02705540
  6. Effect of Fluorine Anions on Anodizing Behavior of AZ91 Magnesium Alloy in Alkaline Solutions vol.155, pp.5, 2008, https://doi.org/10.1149/1.2883739
  7. Influence of the Electrolyte Composition on the Corrosion Behavior of Anodized AZ31B Magnesium Alloy vol.1012, pp.None, 2003, https://doi.org/10.4028/www.scientific.net/msf.1012.424
  8. Anodizing of Pure Magnesium in Sodium Hydroxide Electrolyte Solution vol.405, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/ddf.405.440