DOI QR코드

DOI QR Code

Adsorption Thermodynamics of Polyamidoamide Epichlorohydrin Polymer in an Aqueous Fibrous Suspension

섬유 현탁액내 PAE 고분자 흡착의 열역학적 고찰

  • Sung-Hoon Yoon (Research Institute of Technology, Korea Minting and Security Printing Corporation) ;
  • Kwang-Suk Joo (Department of Environmental Management, Hyechon College) ;
  • Tae-Won Lee (Korea Electric Power Research Insitute, Korea Electric Power Corporation) ;
  • Kun-Han Kim (Environmental Geology Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Byung-Bin Park (Department of Chemistry, Kongju Nat'l University)
  • 윤성훈 (한국조폐공사 기술연구소) ;
  • 주광석 (혜천대학 환경관리과) ;
  • 이태원 (한국전력공사 발전연구실) ;
  • 김건한 (한국지질자원연구원 환경지질연구부) ;
  • 박병빈 (공주대학교 화학과)
  • Published : 2003.06.20

Abstract

This study was to examine the thermodynamic features of polyelecrolytic adsorption of polyamidoamine-epichlorohydrin(PAE) in a papermaking wet-end. The PAE adsorption experiments were conducted in a stirred jar containing an aqueous fibrous suspension and evaluated in terms of Langmuir and Freundlich parameters. The electrokinetic property of a stock was examined by measuring the zeta potential of each colloidal suspension. The polyelectrolytic PCD titration was employed to determine the adsorbed amounts of PAE polymer. The zeta potential of a stock, being varied significantly depending upon the addition of PAE polymer, showed initially a sharp increase and later an exponential decay as a function of time . The PAE adsorption exhibited a pseudo-Langmuir adsorption behavior at$20^{\circ}C$ , whereas its Freundlich power(v) increased in a proportional way at an elevated temperature. The train numbers calculated on the basis of adsorption thermodynamics were 7 to 8. The length of the extended loop of PAE was calculated as 215 nm at $20^{\circ}C$ and increased at a rate of 9% at every $10^{\circ}C$ rise in temperature. The PAE adsorption was proven to be an exothermic physisorption with the estimated adsorption enthalpy of -27 to -29 kJ/mol.

본 연구는 섬유 교질-현탁액내 PAE 고분자 전해질의 흡착성향과 Lanumuir 및 Freundlich식 흡착 평형에 대한 열역학적 특성을 규명하기 위하여 수행되었다. 섬유의 계면동전위적 특성은 흐름-전기적 방법의 제타전위 측정에 의해 분석되었고, PAE 고분자 흡착량은 고분자 전해질용액의 PCD 적정을 통해 측정되었다. PAE 고분자 내첨은 지료의 제타전위에 크게 영향을 미쳤으며 내첨 초기에는 제타전위 상승 효과가 크게 나타났지만 시간의 경과와 함께 전하 감쇄현상을 나타내었다. PAE 고분자는 저온 또는 상온에서 준-Langmuir 흡착 거동을 보여주었으나 온도가 증가하면서 Freundlich 지수항(v)이 비례적으로 높아지는 결과를 나타내었다. PAE 고분자의 Gibbs 흡착 자유에너지로부터 산출한 트레인 수$(N_{seg})$는 상온에서 약 7~8의 범위로 나타났고 고분자 고리의 노출반경은 약 215 nm로서 $10^{\circ}C$ 온도상승에 대해 점차 9%씩 증가하였다. 지료 내 PAE 고분자의 흡착 엔탈피는 -27~-29 kJ/mol이며 저에너지 물리흡착임이 규명되었다.

Keywords

References

  1. Marton, J.; Marton, T., Tappi J., 1976, 59(12), 121.
  2. Lindstrom, T.; Soremark, C., Adsorption of cationicpolyacrylamides on cellulose. J. Coll. Int. Sci., 1976,55(2), 305. https://doi.org/10.1016/0021-9797(76)90038-2
  3. Horn, D., Progr. Colloid & Polymer Sci., 1978, 65, 251. https://doi.org/10.1007/BFb0117226
  4. Horn, D.; Melzer, J.; in Fibre-Water Interactions inPapermaking. Transactions of the Sixth FundamentalResearch Symposium, BPBIF, Oxford, 1977, 135.
  5. Tanaka, H.; Tachiki, K.; Sumimoto, M.; Tappi J., 1979,62(1), 41.
  6. Marton, J., Tappi J., 1980, 63(4), 87.
  7. Jarnstrom, L.; Steniun, P.; Colloids Surfaces, 1990,50(1), 47. https://doi.org/10.1016/0166-6622(90)80253-Z
  8. Chibowski, S., J. Coll. Int. Sci., 1990, 143(1), 174.
  9. Laurila, M.; The Adsorption of Nonionic Surfactantsand Polyacrylic Acid on Talc: Lic. Techn. Thesis, Departmentof Forest Products Technology, Helsinki University ofTechnology, Espoo, Finland, 1996.
  10. Jonsson, B.; Lindman, B.; Holmberg, K.; Kronberg, B.;Surfactant and Polymers in Aqueous Solution, JohnWiley & Sons, New York, 1998, 303.
  11. Kindler, W. A.; Swanson, J. W.; J. Polymer Sci., 1971,9(A-2), 853.
  12. Horn, D.; Progr. Coll. Polymer Sci., 1978, 65, 251. https://doi.org/10.1007/BFb0117226
  13. Horn, D.; in Polymeric Amines and Ammonium Sults,ed. E. J. Goethals, Pergamon Press, Oxford, 1980, 333.
  14. Mahanta, D.; Chaliha, B.C.; Baruah, J.N.; Coll. andSurf., 1987, 25, 101. https://doi.org/10.1016/0166-6622(87)80294-9
  15. Falk, M.; Odberg, L; Wagberg, L.; Risinger, G.; Coll.and Surf., 1989, 40, 115. https://doi.org/10.1016/0166-6622(89)80012-5
  16. Tanaka, H.; swerin, A.; Odberg, L.; Tappi J. 1993,75(5), 157.
  17. Odberg, L.; Tanaka, H.; Glad-Nordma; G., Swerin, A.;Coll. and Surf., A: Physicochem. Eng. Aspects, 1994, 86, 201. https://doi.org/10.1016/0927-7757(93)02676-6
  18. Matthhew H. Lang; Robert A. Stratton; Polyelectrolyteadsorption kinetics, Tappi 1995 Papermakers ConferenceProceedings, TAPPI Press, Atlanta, 1995, 101.
  19. Hessselink, F.; Th.; J. Electroanal. Chem., 1972, 37,317. https://doi.org/10.1016/S0022-0728(72)80236-5
  20. Hesselink, F. Th.; J. Coll. Int. Sci., 1977, 60, 448. https://doi.org/10.1016/0021-9797(77)90309-5
  21. Scott, W. E.; Principles of Wet End Chemistry, TappiPress, Atlanta, 1996, 64.
  22. Atkins, P. W.; Physical Chemistry, 2nd Ed., OxfordUniversity Press, W.H. Freeman and Company, SanFrancisco, 1982, 1012
  23. Hunter, R.J.; Introduction to Modern Colloid Science,Oxford University Press, New York, 1993, 164.
  24. Hoeve, C.A.J.; J. Polym. Sci., 1971, 34(C), 1.
  25. Silberberg, A.; J. Chem. Phys., 1968, 48, 2835. https://doi.org/10.1063/1.1669540
  26. Parfitt, G.D.; Rochester C.H.; Adsorption from solutionat the Solid/Liquid Interface, Academic Press, New York,1983, 388.
  27. P. Stenius, “Macromolecular, Surface and ColloidChemistry,” in Forest Products Chemistry, Vol. 3,Papermaking Science and Technology, Fapet Oy. Helsinki,p227(2000).