DOI QR코드

DOI QR Code

Collective Electronic Oscillator Method: Application to Conjugated Organic Molecules

  • Lee, Jin-Yong (Department of Chemistry, Chonnam National University)
  • Published : 2003.06.20

Abstract

The collective electronic oscillator (CEO) method was developed by Mukamel and collaborators.[Phys. Rev. Lett. 1992, 69, 65; Science 1997, 277, 781] Recently Ⅰ have extended the CEO method to obtain the frequency dependent optical properties with all the contributing components. The brief introduction of the CEO fomalism and its recent applications to linear absorption and two-photon absorption (TPA) of conjugated organic molecules will be discussed. The size scaling of optical properties of polyenes and polyynes have studied by ab initio calculations, and this result is consistent with the coherence length of the time dependent densities to first ($ρ^(1)$) and second order ($ρ^(2)$) in the electric field obtained from the CEO method.

Keywords

References

  1. Bredas, J. L.; Cornil, J.; Beljonne, D.; Santos, D. A. dos; Shuai, Z. G. Acc. Chem. Res. 1999, 32, 267. https://doi.org/10.1021/ar9800338
  2. Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.;Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Röckel, H.;Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J.-L. J.Am. Chem. Soc. 2000, 122, 9500. https://doi.org/10.1021/ja994497s
  3. Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94,195. https://doi.org/10.1021/cr00025a007
  4. Heeger, A. J. Rev. Mod. Phys. 2001, 73, 681. https://doi.org/10.1103/RevModPhys.73.681
  5. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403,750. https://doi.org/10.1038/35001541
  6. Frolov, S. V.; Gellermann, W.; Ozaki, M.; Yoshino, K.; Vardeny,Z. V. Phys. Rev. Lett. 1997, 78, 729. https://doi.org/10.1103/PhysRevLett.78.729
  7. Lalamam, S. J.; Garito, A. F. Phys. Rev. A 1979, 20, 1179. https://doi.org/10.1103/PhysRevA.20.1179
  8. Docherty, V. J.; Pugh, D.; Morley, J. J. Chem. Soc., Faraday Trans. 2 1985, 81, 1179. https://doi.org/10.1039/f29858101179
  9. Kanis, D. R.; Ratner, M. A.; Marks, T. J.; Zerner, M. C. Chem.Mater. 1991, 3, 19. https://doi.org/10.1021/cm00013a009
  10. Ward, J. F. Rev. Mod. Phys. 1965, 37, 1. https://doi.org/10.1103/RevModPhys.37.1
  11. Dirk, C. W.; Kuzyk, M. G. Phys. Rev. A 1989, 39, 1219. https://doi.org/10.1103/PhysRevA.39.1219
  12. Kuzyk, M. G.; Dirk, C. W. Phys. Rev. A 1990, 41, 5098. https://doi.org/10.1103/PhysRevA.41.5098
  13. Oudar, J. L. J. Chem. Phys. 1977, 67, 446.
  14. Blanchard-Desce, M.; Barzoukas, M. J. Opt. Soc. Am. B 1998, 15,302. https://doi.org/10.1364/JOSAB.15.000302
  15. Marder, S. R.; Berattan, D. N.; Cheng, L. T. Science 1991, 252,103. https://doi.org/10.1126/science.252.5002.103
  16. Zyss, J. J. Chem. Phys. 1979, 70, 3333 https://doi.org/10.1063/1.437918
  17. Zyss, J. J. Chem. Phys. 1979, 70, 3341 https://doi.org/10.1063/1.437919
  18. Zyss, J. J. Chem. Phys. 1979, 71, 909. https://doi.org/10.1063/1.438380
  19. Mukamel, S.; Tretiak, S.; Wagersreiter, T.; Chernyak, V. Science1997, 277, 781. https://doi.org/10.1126/science.277.5327.781
  20. Mukamel, S.; Takahashi, A.; Wang, H. X.; Chen, G. Science 1994,266, 250. https://doi.org/10.1126/science.266.5183.250
  21. Mukamel, S.; Wang, H. X. Phys. Rev. Lett. 1992, 69, 65. https://doi.org/10.1103/PhysRevLett.69.65
  22. Toury, T.; Zyss, J.; Chernyak, V.; Mukamel, S. J. Phys. Chem. A2001, 105, 5692. https://doi.org/10.1021/jp004471j
  23. Tretiak, S.; Mukamel, S. Chem. Rev. 2002, 102, 3171 https://doi.org/10.1021/cr0101252
  24. Bazan, G. C.; Oldham, W. J., Jr.; Lachicotte, R. J.; Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1998, 120, 9188. https://doi.org/10.1021/ja973816h
  25. Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak, V.; Mukamel, S.; Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 11956. https://doi.org/10.1021/ja0022526
  26. Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1997,119, 11408. https://doi.org/10.1021/ja9720164
  27. Tretiak, S.; Chernyak, V.; Mukamel, S. Chem. Phys. Lett. 1996,259, 55. https://doi.org/10.1016/0009-2614(96)00790-7
  28. Saad, Y. Numerical Methods for Large Eigenvalue Problems;University Press; Manchester, 1992
  29. Chernyak, V.; Schultz, M. F.; Mukamel, S.; Tretiak, S.; Tsiper, E. V. J. Chem. Phys. 2000, 113, 36. https://doi.org/10.1063/1.481770
  30. Davidson, E. R. J. Comput. Phys. 1975, 17, 87 https://doi.org/10.1016/0021-9991(75)90065-0
  31. Stratmann, E. R.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109,8218. https://doi.org/10.1063/1.477483
  32. Wiberg, K. B.; Stratmann, E. R.; Frisch, M. J. Chem. Phys. Lett.1998, 297, 60. https://doi.org/10.1016/S0009-2614(98)01119-1
  33. Tretiak, S.; Saxena, A.; Martin, R. L.; Bishop, A. R. J. Phys.Chem. B 2000, 104, 7029. https://doi.org/10.1021/jp000397t
  34. Lee, J. Y.; Tretiak, S.; Volkov, S.; Bazan, G. C.; Zyss, J.;Mukamel, S. submitted.
  35. Lee, J. Y.; Tretiak, S.; Volkov, S.; Kim, K. S.; Mukamel, S. inpreparation.
  36. Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.;Keikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.;McCord-Maughon, D.; Perry, J. W.; Röckel, H.; Rumi, M.;Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998,281, 1653. https://doi.org/10.1126/science.281.5383.1653
  37. Hudson, B. S.; Kohler, B. E. Annu. Rev. Phys. Chem. 1974, 25,437. https://doi.org/10.1146/annurev.pc.25.100174.002253
  38. Hudson, B. S.; Kohler, B. E.; Schulten, K. In Excited States, Vol.6; Lim, E. C., Ed.; Academic Press: New York, 1982; pp 1-95.
  39. Lee, J. Y.; Mhin, B. J.; Mukamel, S.; Kim, K. S. submitted.
  40. Orr, B. J.; Ward, J. F. Mol. Phys. 1971, 20, 513. https://doi.org/10.1080/00268977100100481
  41. Klessinger, M.; Michl, J. Excited States and Photochemistry ofOrganic Molecules; VCH: New York, 1995.
  42. Nonlinear Optical Properties of Organic Molecules and Crystals;Zyss, J.; Chemla, D. S., Eds.; Academic Press: Florida, 1987; Vol. 1 and 2.
  43. Rodenberg, D. C.; Heflin, J. R.; Garito, A. F. Nature 1992, 359, 309. https://doi.org/10.1038/359309a0

Cited by

  1. A Theoretical Analysis of the Excited State of Oligoacene Aggregates: Local Excitation vs. Charge-Transfer Transition vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10443
  2. Static (hyper)polarizabilities and absorption spectra of single [2.2]p-cyclophane NO2/NH2 substituted from DFT methods vol.49, pp.5, 2017, https://doi.org/10.1007/s11082-017-1023-6
  3. Signatures of Through‐Space Charge Transfer in Two‐Photon Absorption of Paracyclophane Derivatives vol.40, pp.11, 2003, https://doi.org/10.1002/bkcs.11874