References
- Bredas, J. L.; Cornil, J.; Beljonne, D.; Santos, D. A. dos; Shuai, Z. G. Acc. Chem. Res. 1999, 32, 267. https://doi.org/10.1021/ar9800338
- Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.;Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Röckel, H.;Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J.-L. J.Am. Chem. Soc. 2000, 122, 9500. https://doi.org/10.1021/ja994497s
- Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94,195. https://doi.org/10.1021/cr00025a007
- Heeger, A. J. Rev. Mod. Phys. 2001, 73, 681. https://doi.org/10.1103/RevModPhys.73.681
- Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403,750. https://doi.org/10.1038/35001541
- Frolov, S. V.; Gellermann, W.; Ozaki, M.; Yoshino, K.; Vardeny,Z. V. Phys. Rev. Lett. 1997, 78, 729. https://doi.org/10.1103/PhysRevLett.78.729
- Lalamam, S. J.; Garito, A. F. Phys. Rev. A 1979, 20, 1179. https://doi.org/10.1103/PhysRevA.20.1179
- Docherty, V. J.; Pugh, D.; Morley, J. J. Chem. Soc., Faraday Trans. 2 1985, 81, 1179. https://doi.org/10.1039/f29858101179
- Kanis, D. R.; Ratner, M. A.; Marks, T. J.; Zerner, M. C. Chem.Mater. 1991, 3, 19. https://doi.org/10.1021/cm00013a009
- Ward, J. F. Rev. Mod. Phys. 1965, 37, 1. https://doi.org/10.1103/RevModPhys.37.1
- Dirk, C. W.; Kuzyk, M. G. Phys. Rev. A 1989, 39, 1219. https://doi.org/10.1103/PhysRevA.39.1219
- Kuzyk, M. G.; Dirk, C. W. Phys. Rev. A 1990, 41, 5098. https://doi.org/10.1103/PhysRevA.41.5098
- Oudar, J. L. J. Chem. Phys. 1977, 67, 446.
- Blanchard-Desce, M.; Barzoukas, M. J. Opt. Soc. Am. B 1998, 15,302. https://doi.org/10.1364/JOSAB.15.000302
- Marder, S. R.; Berattan, D. N.; Cheng, L. T. Science 1991, 252,103. https://doi.org/10.1126/science.252.5002.103
- Zyss, J. J. Chem. Phys. 1979, 70, 3333 https://doi.org/10.1063/1.437918
- Zyss, J. J. Chem. Phys. 1979, 70, 3341 https://doi.org/10.1063/1.437919
- Zyss, J. J. Chem. Phys. 1979, 71, 909. https://doi.org/10.1063/1.438380
- Mukamel, S.; Tretiak, S.; Wagersreiter, T.; Chernyak, V. Science1997, 277, 781. https://doi.org/10.1126/science.277.5327.781
- Mukamel, S.; Takahashi, A.; Wang, H. X.; Chen, G. Science 1994,266, 250. https://doi.org/10.1126/science.266.5183.250
- Mukamel, S.; Wang, H. X. Phys. Rev. Lett. 1992, 69, 65. https://doi.org/10.1103/PhysRevLett.69.65
- Toury, T.; Zyss, J.; Chernyak, V.; Mukamel, S. J. Phys. Chem. A2001, 105, 5692. https://doi.org/10.1021/jp004471j
- Tretiak, S.; Mukamel, S. Chem. Rev. 2002, 102, 3171 https://doi.org/10.1021/cr0101252
- Bazan, G. C.; Oldham, W. J., Jr.; Lachicotte, R. J.; Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1998, 120, 9188. https://doi.org/10.1021/ja973816h
- Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak, V.; Mukamel, S.; Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 11956. https://doi.org/10.1021/ja0022526
- Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1997,119, 11408. https://doi.org/10.1021/ja9720164
- Tretiak, S.; Chernyak, V.; Mukamel, S. Chem. Phys. Lett. 1996,259, 55. https://doi.org/10.1016/0009-2614(96)00790-7
- Saad, Y. Numerical Methods for Large Eigenvalue Problems;University Press; Manchester, 1992
- Chernyak, V.; Schultz, M. F.; Mukamel, S.; Tretiak, S.; Tsiper, E. V. J. Chem. Phys. 2000, 113, 36. https://doi.org/10.1063/1.481770
- Davidson, E. R. J. Comput. Phys. 1975, 17, 87 https://doi.org/10.1016/0021-9991(75)90065-0
- Stratmann, E. R.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109,8218. https://doi.org/10.1063/1.477483
- Wiberg, K. B.; Stratmann, E. R.; Frisch, M. J. Chem. Phys. Lett.1998, 297, 60. https://doi.org/10.1016/S0009-2614(98)01119-1
- Tretiak, S.; Saxena, A.; Martin, R. L.; Bishop, A. R. J. Phys.Chem. B 2000, 104, 7029. https://doi.org/10.1021/jp000397t
- Lee, J. Y.; Tretiak, S.; Volkov, S.; Bazan, G. C.; Zyss, J.;Mukamel, S. submitted.
- Lee, J. Y.; Tretiak, S.; Volkov, S.; Kim, K. S.; Mukamel, S. inpreparation.
- Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.;Keikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.;McCord-Maughon, D.; Perry, J. W.; Röckel, H.; Rumi, M.;Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998,281, 1653. https://doi.org/10.1126/science.281.5383.1653
- Hudson, B. S.; Kohler, B. E. Annu. Rev. Phys. Chem. 1974, 25,437. https://doi.org/10.1146/annurev.pc.25.100174.002253
- Hudson, B. S.; Kohler, B. E.; Schulten, K. In Excited States, Vol.6; Lim, E. C., Ed.; Academic Press: New York, 1982; pp 1-95.
- Lee, J. Y.; Mhin, B. J.; Mukamel, S.; Kim, K. S. submitted.
- Orr, B. J.; Ward, J. F. Mol. Phys. 1971, 20, 513. https://doi.org/10.1080/00268977100100481
- Klessinger, M.; Michl, J. Excited States and Photochemistry ofOrganic Molecules; VCH: New York, 1995.
- Nonlinear Optical Properties of Organic Molecules and Crystals;Zyss, J.; Chemla, D. S., Eds.; Academic Press: Florida, 1987; Vol. 1 and 2.
- Rodenberg, D. C.; Heflin, J. R.; Garito, A. F. Nature 1992, 359, 309. https://doi.org/10.1038/359309a0
Cited by
- A Theoretical Analysis of the Excited State of Oligoacene Aggregates: Local Excitation vs. Charge-Transfer Transition vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10443
- Static (hyper)polarizabilities and absorption spectra of single [2.2]p-cyclophane NO2/NH2 substituted from DFT methods vol.49, pp.5, 2017, https://doi.org/10.1007/s11082-017-1023-6
- Signatures of Through‐Space Charge Transfer in Two‐Photon Absorption of Paracyclophane Derivatives vol.40, pp.11, 2003, https://doi.org/10.1002/bkcs.11874