DOI QR코드

DOI QR Code

Hydrogen Bonding in Aromatic Alcohol-Water Clusters: A Brief Review

  • Ahn, Doo-Sik (School of Environmental Science and Applied Chemistry, Kyunghee University) ;
  • Jeon, In-Sun (School of Environmental Science and Applied Chemistry, Kyunghee University) ;
  • Jang, Sang-Hee (School of Environmental Science and Applied Chemistry, Kyunghee University) ;
  • Park, Sung-Woo (School of Environmental Science and Applied Chemistry, Kyunghee University) ;
  • Lee, Sung-Yul (School of Environmental Science and Applied Chemistry, Kyunghee University) ;
  • Cheong, Won-Jo (Department of Chemistry, Inha University)
  • Published : 2003.06.20

Abstract

Recent experimental and theoretical advances on the aromatic alcohol-water clusters are reviewed, focusing on the structure of the hydrogen bonding between the alcoholic OH group and the binding water molecules. The interplay of experimental observations and theoretical calculations for the elucidation of the structure is demonstrated for phenol-water, benzyl alcohol-water, substituted phenol-water, naphthol-water and tropolone -water clusters. Discussion is made on assigning the role (either proton-donating or -accepting) of the hydroxyl group by measuring the shifts of infrared frequency of the OH stretching mode in the cluster from that of bare aromatic alcohol for the experimental determination of the cluster structure.

Keywords

References

  1. Pimental, G. C.; McClellan, A. L. The Hydrogen Bond; Freemanand Company: San Francisco, 1960.
  2. Zwier, T. S. Annu. Rev. Phys. Chem. 1996, 47, 205. https://doi.org/10.1146/annurev.physchem.47.1.205
  3. Trotonda, F. R.; Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. Chem.Phys. Lett. 1996, 260, 21. https://doi.org/10.1016/0009-2614(96)00839-1
  4. Bandyopadhyay, P.; Gordon, M. S.; Mennucci, B.; Tomasi, J. J.Chem. Phys. 2002, 116, 5023. https://doi.org/10.1063/1.1433503
  5. Park, S.-W.; Ahn, D.-S.; Lee, S. Chem. Phys. Lett. 2003, 371, 74. https://doi.org/10.1016/S0009-2614(03)00221-5
  6. Lee, K. T.; Sung, J.; Lee, K. J.; Kim, S. K.; Park, Y. D. J. Chem.Phys. 2002, 116, 8251. https://doi.org/10.1063/1.1477452
  7. Scheiner, S.; Kar, T.; Pattanayak, J. J. Am. Chem. Soc. 2002, 124,13257. https://doi.org/10.1021/ja027200q
  8. Schutz, M.; Burgi, T.; Leutwyler, S.; Fischer, T. J. Chem. Phys.1993, 98, 3763. https://doi.org/10.1063/1.464055
  9. Barth, H.-D.; Buchhold, K.; Djafari, S.; Reimann, B.; Lommatzsch,U.; Brutschy, B. Chem. Phys. 1998, 239, 49. https://doi.org/10.1016/S0301-0104(98)00306-1
  10. Auspurger, J. D.; Dykstra, C. E.; Zwier, T. S. J. Phys. Chem. 1993,97, 980. https://doi.org/10.1021/j100107a002
  11. Fredericks, S. Y.; Jordan, K. D.; Zwier, T. S. J. Phys. Chem. 1996,100, 7810. https://doi.org/10.1021/jp9535710
  12. Garrett, A. W.; Zwier, T. S. J. Chem. Phys. 1992, 96, 3402. https://doi.org/10.1063/1.461941
  13. Kim, K. S.; Lee, J. Y.; Choi, H. S.; Kim, J.; Jang, J. H. Chem.Phys. Lett. 1997, 265, 497. https://doi.org/10.1016/S0009-2614(96)01473-X
  14. Garrett, A. W.; Severance, D. L.; Zwier, T. S. J. Chem. Phys. 1992,96, 7245. https://doi.org/10.1063/1.462429
  15. Janzen, Ch.; Spangenberg, D.; Roth, W.; Kleinermanns, K. J.Chem. Phys. 1999, 110, 9898. https://doi.org/10.1063/1.478863
  16. Jansen, Ch.; Gerhards, M. J. Chem. Phys. 2001, 115, 5445. https://doi.org/10.1063/1.1394753
  17. Watanabe, H.; Iwata, I. J. Chem. Phys. 1996, 105, 420. https://doi.org/10.1063/1.471918
  18. Watanabe, T.; Ebata, T.; Tanabe, S.; Mikami, N. J. Chem. Phys.1996, 105, 408. https://doi.org/10.1063/1.471917
  19. Gerhards, M.; Kleinermanns, K. J. Chem. Phys. 1995, 103, 7392. https://doi.org/10.1063/1.470310
  20. Watanabe, T.; Ebata, T.; Fujii, M.; Mikami, N. Chem. Phys. Lett.1993, 115, 347.
  21. Feller, D.; Feyereisen, M. W. J. Comp. Chem. 1993, 14, 1027. https://doi.org/10.1002/jcc.540140904
  22. Oikawa, A.; Abe, H.; Mikami, N.; Ito, M. J. Phys. Chem. 1993,87, 1027.
  23. Tarakeshwar, P.; Kim, K. S.; Kraka, E.; Cremer, D. J. Chem. Phys.2001, 115, 6001.
  24. Cheong, W. J.; Kim, C. Y. Bull. Korean Chem. Soc. 2000, 21, 351
  25. Lee, C. S.; Cheong, W. J. J. Liq. Chrom. & Rel. Technol. 1999, 22, 253 https://doi.org/10.1081/JLC-100101658
  26. Lee, C. S.; Cheong, W. J. J. Chromatogr. A 1999, 848, 9 https://doi.org/10.1016/S0021-9673(99)00404-5
  27. Lee, C. S.; Cheong, W. J. J. Chromatogr. A 2001, 848, 9.
  28. Wickleder, C.; Henseler, D.; Leutwyler, S. J. Chem. Phys. 2002,116, 1850. https://doi.org/10.1063/1.1431282
  29. Wade, E. A.; Kline, J. I.; Lorenz, K. T.; Hayden, C.; Chandler, D.W. J. Chem. Phys. 2002, 116, 4755. https://doi.org/10.1063/1.1459702
  30. Braun, J. E.; Mehner, Th.; Neusser, H. J. Intl. J. Mass Spectrom.2000, 203, 1. https://doi.org/10.1016/S1387-3806(00)00384-5
  31. Guchhait, N.; Ebata, T.; Mikami, N. J. Chem. Phys. 1999, 111,8438. https://doi.org/10.1063/1.480184
  32. Jeon, I.-S.; Ahn, D.-S.; Park, S.-W.; Lee, S. (unpublished).
  33. Ivanova, G.; Bratovanova, E.; Petkov, D. J. Peptide Science 2002,8, 8. https://doi.org/10.1002/psc.362
  34. Jang, S.-H.; Park, S.-W.; Kang, J.-H.; Lee, S. Bull. Korean Chem.Soc. 2002, 23, 1297. https://doi.org/10.5012/bkcs.2002.23.9.1297
  35. Gerhards, M.; Unterberg, C.; Kleinermanns, K. Phys. Chem.Chem. Phys. 2000, 2, 5544.
  36. Ahn, D.-S.; Park, S.-W.; Lee, S.; Kim, B. J. Phys. Chem. 2003,A107, 131.
  37. Meenakshi, P. S.; Biswas, N.; Wategaonkar, S. J. Chem. Phys.2002, 117, 11146. https://doi.org/10.1063/1.1523059
  38. Gerhards, M.; Unterberg, C. Appl. Phys. A 2001, 72, 273. https://doi.org/10.1007/s003390100765
  39. Gerhards, M.; Kimpfel, B.; Pohl, M.; Schmitt, M.; Kleinermanns,K. J. Mol. Struct. 1992, 270, 301. https://doi.org/10.1016/0022-2860(92)85036-G
  40. Matsumoto, Y.; Ebata, T.; Mikami, N. J. Chem. Phys. 1998, 109,6303. https://doi.org/10.1063/1.477272
  41. Mitsuzuka, A.; Fujii, A.; Ebata, T.; Mikami, N. J. Chem. Phys.1996, 105, 2618. https://doi.org/10.1063/1.472126
  42. Frost, R. K.; Hagemeister, F.; Arrington, C. A.; Schleppenbach, D.; Zwier, T. S. J. Chem. Phys. 1996, 105, 2595 https://doi.org/10.1063/1.472119
  43. Frost, R. K.; Hagemeister, F.; Arrington, C. A.; Schleppenbach,D.; Zwier, T. S. J. Chem. Phys. 1996, 105, 2605. https://doi.org/10.1063/1.472125

Cited by

  1. ′ and complex varieties in water/methanol mixture vol.49, pp.4, 2011, https://doi.org/10.1080/00319101003646546
  2. Computational study of antimalarial pyrazole alkaloids from Newbouldia laevis vol.20, pp.11, 2014, https://doi.org/10.1007/s00894-014-2464-5
  3. Reaction Kinetics of Catechol (1,2-Benzenediol) and Guaiacol (2-Methoxyphenol) with Ozone vol.119, pp.26, 2015, https://doi.org/10.1021/acs.jpca.5b00174
  4. Anomalous Cage Effect of the Excited State Dynamics of Catechol in the 18-Crown-6–Catechol Host–Guest Complex vol.119, pp.6, 2015, https://doi.org/10.1021/jp508619f
  5. Theoretical Investigations on the π-π Stacking Interactions in Phenol-Water Complexes vol.06, pp.02, 2018, https://doi.org/10.4236/cc.2018.62002
  6. A computational study of the interactions of the caespitate molecule with water vol.108, pp.10, 2008, https://doi.org/10.1002/qua.21594
  7. )-diones and their sulfur analogs-evidence for elucidation of the structure backbone and tautomeric forms vol.48, pp.4, 2010, https://doi.org/10.1002/mrc.2573
  8. A computational study of the carboxylic acid of phloroglucinol in vacuo and in water solution vol.110, pp.3, 2010, https://doi.org/10.1002/qua.22262
  9. Enhancing Effect of Organic Substances on Hydroxyl Radical Generation During Ozonation of Water: Stopped-Flow ESR Technique vol.25, pp.12, 2003, https://doi.org/10.5012/bkcs.2004.25.12.1907
  10. Computational Study of Hydrogen Bonding in Phenol-acetonitrile-water Clusters vol.25, pp.8, 2004, https://doi.org/10.5012/bkcs.2004.25.8.1161
  11. Crystal Packing of Two Different Tetranuclear Iron(III) Clusters, [(tacn)4Fe4O2(OH)4]2.8Br.9H2O (tacn = 1,4,7-triazacyclononane) vol.26, pp.2, 2003, https://doi.org/10.5012/bkcs.2005.26.2.253
  12. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  13. A computational study of the interactions of the phloroglucinol molecule with water vol.852, pp.1, 2008, https://doi.org/10.1016/j.theochem.2007.12.020
  14. Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes vol.51, pp.15, 2003, https://doi.org/10.1016/j.polymer.2010.05.008
  15. Interplay of intramolecular hydrogen bonds, OH orientations, and symmetry factors in the stabilization of polyhydroxybenzenes vol.111, pp.14, 2003, https://doi.org/10.1002/qua.22845
  16. Development characteristics of polymethyl methacrylate in alcohol/water mixtures: a lithography and Raman spectroscopy study vol.27, pp.3, 2003, https://doi.org/10.1088/0957-4484/27/3/035302
  17. Hydrogen bonding between hydrides of the upper-right part of the periodic table vol.507, pp.None, 2003, https://doi.org/10.1016/j.chemphys.2018.03.036
  18. Structure and Spectroscopy of Furan:H2O Complexes vol.122, pp.36, 2003, https://doi.org/10.1021/acs.jpca.8b06308
  19. Proton Coupled Electron Transfer in the Reaction of Hydroxybenzenes with Hydrazyl Radical in Aqueous Media vol.90, pp.1, 2003, https://doi.org/10.1134/s1070363220010041
  20. S1-State Decay Dynamics of Benzenediols (Catechol, Resorcinol, and Hydroquinone) and Their 1:1 Water Clusters vol.125, pp.35, 2003, https://doi.org/10.1021/acs.jpca.1c05448