DOI QR코드

DOI QR Code

Sorption Preconcentration and Determination of Nickel in Wastes of Heat Power Industry by Diffuse Reflection Spectroscopy

  • Kalyakina, O.P. (Krasnoyarsk State University, Dept. of Chemistry) ;
  • Kononova, O.N. (Krasnoyarsk State University, Dept. of Chemistry) ;
  • Kachin, S.V. (Krasnoyarsk State University, Dept. of Chemistry) ;
  • Kholmogorov, A.G. (Institute of Chemistry and Chemical Technology, Siberian Dept. of the Academy of Science)
  • Published : 2003.02.20

Abstract

The present work is focused on the preconcentration of nickel and its determination by means of diffuse reflection spectroscopy. The preconcentration of nickel was carried out by sorption on macroporous aminocarboxylic amphoteric resin ANKB-35. Based on this collector, a method to determine nickel in wastes of heat power industry was worked out using solid-phase spectroscopy. The colored surface compound to be determined was obtained by a preceding nickel sorption on the resin and by subsequent treatment of the concentrate obtained with definite amounts of 1-(2-pyridilazo)-2-naphtol (PAN). The Ni calibration curve is linear in the concentration range of 0.5-20.0 mg/L (sample volume is 200.0 mL) and the detection limit is 0.05 mg/L. The presence of $Cu^{2+},\;Fe^{3+},\;Co^{2+}$ ions as well as macrocomponents of natural water $(Na^+,\;K^+,\;Ca^{2+},\;Mg^{2+})$ do not hinder the solid-phase spectroscopy determination of nickel. The nickel determination by diffuse reflection spectroscopy was carried out in model solutions as well as in solutions obtained after the dissolution of wastes of heat power industry.

Keywords

References

  1. Reymers, N. F. Ohrana Prirody i Okrushaushchey Sredy; Prosweshchenie: Moscow, Russia, 1990; p 230. (Nature Concervation and Environmental Control, in Russian)
  2. Gornaya Encyclopediya; Kozlovskiy, E. A., Ed; Sovetskaya Enzyklopediya: Moscow, Russia, 1985; Vol. 2, p 575. (Mining Enzyklopaedia, in Russian)
  3. Zhabo, V. V. Ohrana Okrushaushchey Sredy na TES i AES; Energoatomisdat: Moscow, Russia, 1992; p 240. (Environmental Control in Heat Power Stations and Nuclear Power Stations, in Russian)
  4. Chimicheskaya Enzyklopediya; Knunyanz, I. L., Ed; Bolshaya Rossiyskaya Enzyklopediya: Moscow, Russia, 1998; p 471. (Chemical Encyclopaedia, in Russian)
  5. Fomin, R. S. Voda. Kontrol Chimicheskoy, Bakterialnoy i Radiacionnoy Besopasnosty po Meshdunarodnym Standartam; Nauka: Moscow, Russia, 1995; p 135. (Water. Control of Chemical, Bacterial and Radiational Safety by International Standard, in Russian)
  6. Wilms, H. Sudwest. Wirt. 1990, 46, 9.
  7. Grebenuk, V. D.; Sobolevskaya, T. T.; Makhno, A. G. Chimiya i Technologiya Vody 1989, 11, 407.
  8. Me Millen, T. NLGI Spokesman 1991, 54, 24.
  9. Yoshimura, K.; Waki, H.; Ohashi, S. Talanta 1976, 23, 449. https://doi.org/10.1016/0039-9140(76)80126-9
  10. Brykina, G. D.; Krysina, L. S.; Ivanov, V. M. J. Anal. Chem. 1988, 43, 1547.
  11. Terlezkaya, A. V.; Bogoslovskaya, T. A. Chimiya i Technologiya Vody 1994, 16, 338.
  12. Brykina, G. D.; Marchenko, D. Y., Shpigun, O. A. J. Anal. Chem. 1995, 50, 440.
  13. Yoshimura, K.; Toshimitsu, Y.; Ohashi, S. Talanta 1980, 29, 693.
  14. Runov, V. K.; Kachin, S. V. Zavodskaya Laboratoriya 1993, 59, 1.
  15. Kononova, O. N.; Kholmogorov, A. G.; Kachin, S. V.; Mytykh, O. V.; Kononov, Y. S.; Kalyakina, O. P.; Pashkov, G. L. Hydrometallurgy 2000, 54, 107. https://doi.org/10.1016/S0304-386X(99)00052-3
  16. Kalyakina, O. P.; Kononova, O. N.; Kachin, S. V.; Kholmogorov, A. G. Acta Hydrochim. Hydrobiol. 2000, 28, 272. https://doi.org/10.1002/1521-401X(200005)28:5<272::AID-AHEH272>3.0.CO;2-J
  17. Umland, F.; Janssen, A.; Thierig, D.; Wünsch, G. Theorie und praktische Anwendung von Komplexbildnern; Mir: Moscow, Russia, 1975; p 347.
  18. Peshkova, V. M.; Savostina, V. M. Analyticheskaya Chimiya Nickelya.; Nauka: Moscow, Russia, 1966; p 5. (Analytical Chemistry of Nickel, in Russian)
  19. Kubelka, P.; Munk, F. Z. Techn. Phys. 1931, 12, 593 (cited from [21]).
  20. Kubelka, P. J. Opt. Soc. Amer. 1948, 38, 448 (cited from [21]). https://doi.org/10.1364/JOSA.38.000448
  21. Runov, V. L.; Tropina, V. V. J. Anal. Chem. 1996, 51, 64.
  22. Pollard, J. H. A Handbook of Numerical and Statistical Techniques; Cambridge University Press: Cambridge, U.K., 1977; p 342.
  23. Kokotov, Y. A.; Pasechnik, V. A. Ravnovesie i Kinetika Ionnogo Obmena; Chimiya: Leningrad, Russia, 1970; p 312. (Equilibria and Kinetics of Ion Exchange, in Russian).
  24. Saldadze, K. M.; Kopylova-Valova, V. D. Kompleksoobrasuyushchie Ionity; Chimiya: Moscow, 1980; p 516. (Complex-forming Ion Exchangers, in Russian).
  25. Nakamoto, K. Infrakrasnye Spectry Neorganicheskikh i Koordinazionnykh Soedineniy; Mir: Moscow, Russia, 1966; p 373. (IR-spectra of Inorganic and Coordinating Compounds, in Russian).
  26. Burger, K. Organic Reagents in Metal Analysis; Mir: Moscow, 1975; p 148.

Cited by

  1. A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions vol.178, pp.3-4, 2012, https://doi.org/10.1007/s00604-012-0846-x
  2. Combination of flotation and flame atomic absorption spectrometry for determination, preconcentration and separation of trace amounts of metal ions in biological samples vol.32, pp.5, 2013, https://doi.org/10.1177/0960327112444936
  3. Cadmium and nickel determinations in some food and water samples by the combination of carrier element-free coprecipitation and flame atomic absorption spectrometry vol.95, pp.5, 2013, https://doi.org/10.1080/02772248.2013.812730
  4. Reflection of the Physiochemical Characteristics of 1-(2-pyridylazo)-2-naphthol on the Pre-concentration of Trace Heavy Metals vol.46, pp.5, 2016, https://doi.org/10.1080/10408347.2016.1140019
  5. Selective trace determination of lead ions in different agricultural products using a novel core–shell magnetic ion-imprinted polymer with the aid of experimental design methodology vol.41, pp.16, 2017, https://doi.org/10.1039/C7NJ00987A
  6. Study of dissociation of Ritodrine, Phenylepherine and Midodrine and their binary complexation with M(II) ions vol.55, pp.3, 2017, https://doi.org/10.1080/00319104.2016.1206100
  7. Comparative Study of Single and Multiple Pollutants System Using Ti–Fe Chitosan LDH Adsorbent with High Performance in Wastewater Treatment vol.62, pp.11, 2017, https://doi.org/10.1021/acs.jced.7b00453
  8. Lead Film Electrode Prepared with the Use of a Reversibly Deposited Mediator Metal in Adsorptive Stripping Voltammetry of Nickel vol.26, pp.9, 2014, https://doi.org/10.1002/elan.201400263
  9. Sorption and Separation of Thiocyanate Gold and Silver Complexes and Determination of Gold by Diffuse Reflectance Spectroscopy vol.25, pp.7, 2003, https://doi.org/10.5012/bkcs.2004.25.7.1019
  10. Enrichment/separation of cadmium(II) and lead(II) in environmental samples by solid phase extraction vol.121, pp.1, 2003, https://doi.org/10.1016/j.jhazmat.2005.01.015
  11. A novel homocystine–agarose adsorbent for separation and preconcentration of nickel in table salt and baking soda using factorial design optimization of the experimental conditions vol.68, pp.5, 2006, https://doi.org/10.1016/j.talanta.2005.08.049
  12. Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent vol.577, pp.2, 2006, https://doi.org/10.1016/j.aca.2006.06.049
  13. Preconcentration and separation of copper, nickel and zinc in aqueous samples by flame atomic absorption spectrometry after column solid-phase extraction onto MWCNTs impregnated with D2EHPA-TOPO mixtu vol.185, pp.2, 2003, https://doi.org/10.1016/j.jhazmat.2010.10.023