DOI QR코드

DOI QR Code

Capillary Electrophoresis of Single-stranded DNA

  • Choi, Hyun-Ju (Division of Chemistry and Chemical Engineering, Kyungnam University) ;
  • Kim, Yong-Seong (Division of Chemistry and Chemical Engineering, Kyungnam University)
  • Published : 2003.07.20

Abstract

We have studied the migration behavior of single-stranded DNA using capillary gel electrophoresis under various conditions. It was found that optimum electric fields should be less than 150 V/cm for the good tradeoff between the separation time and the resolution. It seems that the gel matrix with the combination of different polymer average molecular weights is important to extend the maximum readable DNA bases. The total gel concentration less than 3.1% in the mixed gel system showed good separation efficiency up to 600 bases. The best result was obtained with the poy(ethylene)oxide (PEO) gel concentration of 1.2% of Mr 8,000,000 and 1.8% of Mr 600,000. We observed that the capillary length between 50 cm to 100 cm (effective length) should be employed for the optimization between the total DNA migration time and the maximum readable length. A trizma base-boric acid-ethlyenediaminetetraacetic acid (EDTA) (TBE) buffer was commonly used for DNA sequencing, but we found that 3-[tris(hydroxymethyl)methyl amino]-1-propane sulfonic acid (TAPS) buffer worked as well for the single-stranded DNA separation. Especially, TAPS buffer showed a good resolution for very short DNA bases (1 to 30 bases).

Keywords

References

  1. Kim, Y.; Morris, M. D. Anal. Chem. 1995, 67, 784. https://doi.org/10.1021/ac00101a002
  2. Salas-Solano, O.; Ruiz-Martinez, M. C.; Lev, K. E.; Karger, B. L.Anal. Chem. 1998, 70, 1528. https://doi.org/10.1021/ac9711448
  3. Brazill, S. A.; Kim, P. H.; Kuhr, W. G. Anal. Chem. 2001, 73,4882. https://doi.org/10.1021/ac010521k
  4. Abuin, A.; Holt, K. H.; Platt, K. A.; Sands, A. T.; Zambrowicz, B.P. Trends in Biotechnology 2002, 20, 36. https://doi.org/10.1016/S0167-7799(01)01843-1
  5. Lee, M. S.; Kerns, E. H. Mass Spectrometry Reviews 1999, 18, 187. https://doi.org/10.1002/(SICI)1098-2787(1999)18:3/4<187::AID-MAS2>3.0.CO;2-K
  6. Zhang, Z. L.; Harrison, P. M.; Gerstein, M. Journal of MolecularBiology 2002, 323, 811. https://doi.org/10.1016/S0022-2836(02)01035-5
  7. Zhang, Y.; Tan, H.; Yeung, E. S. Anal. Chem. 1999, 71, 5019.
  8. Nelson, R. The Lancet 2002, 360, 1667.
  9. Weinberger, R.; Lurie, I. S. Anal. Chem. 1991, 63, 823. https://doi.org/10.1021/ac00008a018
  10. Liu, Y.; Kuhr, W. G. Anal. Chem. 1999, 71, 1668. https://doi.org/10.1021/ac9814492
  11. Studier, F. W. Trends in Biochemical Sciences 2000, 25, 588. https://doi.org/10.1016/S0968-0004(00)01679-0
  12. Strege, M.; Nesi, M.; Righetti, R. G. J. Chromatog. A 1993, 652,31. https://doi.org/10.1016/0021-9673(93)80642-L
  13. Cohen, A. S.; Najarian, D. R.; Karger, B. L. J. Chromatog. A1990, 516, 49. https://doi.org/10.1016/S0021-9673(01)90203-1
  14. Manabe, T. Electrophoresis 1999, 20, 3116. https://doi.org/10.1002/(SICI)1522-2683(19991001)20:15/16<3116::AID-ELPS3116>3.0.CO;2-0
  15. Chen, H. S.; Chang, H. T. Anal. Chem. 1999, 71, 2033. https://doi.org/10.1021/ac981356k
  16. Lieberwirth, U.; Arden-Jacob, J.; Drexhage, K. H.; Herten, D. P.;Muller, R.; Neumann, M.; Schulz, A.; Siebert, S.; Sagner,G.; Klingel, S.; Sauer, M.; Wolfrum, J. Anal. Chem. 1998, 70,4772.
  17. Kim, Y.; Yeung, E. S. J. Chromatog. A 1997, 781, 315. https://doi.org/10.1016/S0021-9673(97)00472-X
  18. Peck, K.; Wung, S. L.; Chang, G. S.; Yen, J. J. Y.; Hsieh, Y. Z.Anal. Chem. 1997, 69, 1380. https://doi.org/10.1021/ac9609586
  19. Moon, B. G.; Choi, K. S.; Lee, Y. I.; Kim, Y. Microchem. J. 2002,72, 305. https://doi.org/10.1016/S0026-265X(02)00082-6
  20. Kostrhunova, H.; Brabec, V. Biochemistry 2000, 39(41), 12639. https://doi.org/10.1021/bi000710h
  21. Kim, Y.; Morris, M. D. Anal. Chem. 1994, 66, 3081. https://doi.org/10.1021/ac00091a015
  22. Gao, Q.; Yeung, E. S. Anal. Chem. 1998, 70(7), 1382. https://doi.org/10.1021/ac970999h
  23. Tseng, W. L.; Chang, H. T. Electrophoresis 2001, 22, 763. https://doi.org/10.1002/1522-2683(200102)22:4<763::AID-ELPS763>3.0.CO;2-W
  24. Rathore, A. S.; Reynolds, K. J.; Colon, L. A. Electrophoresis2002, 23, 2918. https://doi.org/10.1002/1522-2683(200209)23:17<2918::AID-ELPS2918>3.0.CO;2-C
  25. Albarghouthi, M. N.; Barron, A. E. Electrophoresis 2000, 21,4096. https://doi.org/10.1002/1522-2683(200012)21:18<4096::AID-ELPS4096>3.0.CO;2-W
  26. Harrold, M. P.; Wojtusik, M. J.; Riviello, J.; Henson, P. J.Chromatog. A 1993, 640, 463. https://doi.org/10.1016/0021-9673(93)80216-U
  27. Meada, Y.; Tsukida, N.; Kitano, H.; Terada, T.; Yamanaka, J. J.Phys. Chem. 1993, 97, 13903. https://doi.org/10.1021/j100153a073
  28. Takana, N.; Ito, K.; Kitano, H. Macromolecules 1994, 27, 540. https://doi.org/10.1021/ma00080a031

Cited by

  1. Determination of Na and Al Ions in Semiconductor Cleaning Solution Using Capillary Electrophoresis vol.24, pp.12, 2003, https://doi.org/10.5012/bkcs.2003.24.12.1838
  2. Analysis of Hydroquinone and Its Ether Derivatives by Using Micellar Electrokinetic Chromatography (MEKC) vol.26, pp.5, 2003, https://doi.org/10.5012/bkcs.2005.26.5.819
  3. Interaction of biological buffers with electrolytes: Densities of aqueous solutions of two substituted aminosulfonic acids and ionic salts from T=(298.15 to 328.15)K vol.41, pp.5, 2003, https://doi.org/10.1016/j.jct.2008.12.011
  4. New Insights into Buffer-Ionic Salt Interactions: Solubilities, Transfer Gibbs Energies, and Transfer Molar Volumes of TAPS and TAPSO from Water to Aqueous Electrolyte Solutions vol.39, pp.11, 2003, https://doi.org/10.1007/s10953-010-9611-0
  5. Gel electrophoresis in a polyvinylalcohol coated fused silica capillary for purity assessment of modified and secondary-structured oligo- and polyribonucleotides vol.6, pp.None, 2003, https://doi.org/10.1038/srep19437