DOI QR코드

DOI QR Code

Theoretical Study of Positronium Atoms Using Frozen Gaussian-type Geminals

  • Published : 2003.06.20

Abstract

We report on the theoretical positron affinities of closed-shell atomic anions. The second-order many-body perturbation theory is applied taking the positron-electron interaction as a perturbation. The corrections for the complete basis set effects to the second order affinity are calculated based on the variational and nonvariational energy functionals of explicitly correlated geminals. It is shown that the explicitly correlated methods accelerate the convergence of the expansion significantly giving the account of the cusp behavior outside the orbital space.

Keywords

References

  1. Mohorovicic, S. Astron. Nachr. 1934, 253, 94.
  2. Shearer, J. W.; Deutsch, M. Phys. Rev. 1949, 76, 462.
  3. Cartire, E.; Heinrich, F.; Kiess, H.; Wieners, G.; Monkenbusch,M. Positrin Annihilation; Jain, P. C., Singru, R. M., Gopinathan,K. P., Eds.; World Scientific:Singapore, 1985
  4. Cade, P. E.; Farazdel, A. J. Chem. Phys. 1977, 66, 2598. https://doi.org/10.1063/1.434259
  5. Kurtz, H. A.; Jordan, K. D. J. Chem. Phys. 1981, 75, 1876. https://doi.org/10.1063/1.442211
  6. Patrick, A. J.; Cade, P. E. J. Chem. Phys. 1981, 75, 1893. https://doi.org/10.1063/1.442213
  7. Tachikawa, M.; Mori, K.; Suzuki, K.; Iguchi, K. Int. J. QuantumChem. 1998, 70, 491. https://doi.org/10.1002/(SICI)1097-461X(1998)70:3<491::AID-QUA5>3.0.CO;2-P
  8. Schrader, D. M.; Yoshida, T.; Iguchi, K. Phys. Rev. Lett. 1992,68, 3281. https://doi.org/10.1103/PhysRevLett.68.3281
  9. Schrader, D. M.; Yoshida, T.; Iguchi, K. J. Chem. Phys. 1993, 98, 7185. https://doi.org/10.1063/1.464710
  10. Yoshida, T.; Miyako, G. Phys. Rev. A 1996, 54, 4571. https://doi.org/10.1103/PhysRevA.54.4571
  11. Yoshida, T.; Miyako, G. J. Chem. Phys. 1997, 107, 3864. https://doi.org/10.1063/1.474745
  12. Bressanini, D.; Mella, M.; Morosi, G. J. Chem. Phys. 1998,108, 4756. https://doi.org/10.1063/1.475887
  13. Bressanini, D.; Mella, M.; Morosi, G. J. Chem.Phys. 1998, 109, 1716. https://doi.org/10.1063/1.476745
  14. Bressanini, D.; Mella, M.; Morosi,G. J. Chem. Phys. 1998, 109, 5931. https://doi.org/10.1063/1.477216
  15. Mella, M.; Morosi, G.; Bressanini, D.; Elli, S. J. Chem. Phys. 2000, 113, 6154.
  16. Mella, M.; Casalegno, M.; Morosi, G. J. Chem. Phys. 2002, 117,1450. https://doi.org/10.1063/1.1486447
  17. Tachikawa, M.; Sainowo, H.; Iguchi, K.; Suzuki, K. J. Chem.Phys. 1994, 101, 5925. https://doi.org/10.1063/1.467309
  18. Kato, T. Commun Pure Appl. Math. 1957, 10, 151. https://doi.org/10.1002/cpa.3160100201
  19. Hoffmann-Ostenhof, M.; Seiler, R. Phys. Rev. A 1981, 23, 21. https://doi.org/10.1103/PhysRevA.23.21
  20. Kutzelnigg, W. Theor. Chim. Acta 1985, 68, 445. https://doi.org/10.1007/BF00527669
  21. Hill, R. N. J. Chem. Phys. 1985, 83, 1173.
  22. Hyleraas, E. A. Z. Phys. 1929, 54, 347. https://doi.org/10.1007/BF01375457
  23. James, H. M.; Coolidge, A. S. J. Chem. Phys. 1933, 1, 825. https://doi.org/10.1063/1.1749252
  24. Pan, K. C.; King, H. F. J. Chem. Phys. 1972, 56, 4667. https://doi.org/10.1063/1.1677918
  25. Adamowicz, L.; Sadlej, A. J. Chem. Phys. Lett. 1977, 48, 305. https://doi.org/10.1016/0009-2614(77)80320-5
  26. Adamowicz, L.; Sadlej, A. J. Chem. Phys. 1977, 67, 4298. https://doi.org/10.1063/1.435370
  27. Szalewicz, K.; Jeziorski, B; Monkhorst, H. J.; Zabolitzky, J. G. J.Chem. Phys. 1983, 78, 1420. https://doi.org/10.1063/1.444884
  28. Szalewicz, K.; Zabolitzky, J. G.;Jeziorski, B.; Monkhorst, H. J. J. Chem. Phys. 1984, 81, 2723. https://doi.org/10.1063/1.447984
  29. Persson, B. J.; Taylor, P. R. J. Chem. Phys. 1996, 105, 5915. https://doi.org/10.1063/1.472432
  30. Kutzelnigg, W. Theor. Chim. Acta 1985, 68, 445. https://doi.org/10.1007/BF00527669
  31. Kutzelnigg, W.; Klopper, W. J. Chem. Phys. 1991, 94, 1985. https://doi.org/10.1063/1.459921
  32. Termath, V.; Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1991,94, 2002. https://doi.org/10.1063/1.459922
  33. Klopper, W.; Kutzelnigg, W. J. Chem. Phys. 1991,94, 2020. https://doi.org/10.1063/1.459923
  34. Noga, J.; Kutzelnigg, W. J. Chem. Phys. 1994, 101,7738. https://doi.org/10.1063/1.468266
  35. Noga, J.; Tunega, D.; Klopper, W.; Kutzelnigg, W. J.Chem. Phys. 1995, 103, 309. https://doi.org/10.1063/1.469643
  36. CC-R12: An Explicitly Correlated Coupled-Cluster Theory; Noga, J.; Klopper, W.; Kutzelnigg, W. Recent Advances in Coupled-Cluster Methods;Bartlett, R. J., Ed.; World Scientific: 1997.
  37. Boys, S. F.; Handy, N. C. Proc. R. Soc. London, Ser. A 1969,310, 43. https://doi.org/10.1098/rspa.1969.0061
  38. Handy, N. C. Mol. Phys. 1973, 26, 169. https://doi.org/10.1080/00268977300101481
  39. Ten-no, S. Chem. Phys. Lett. 2000, 330, 169. https://doi.org/10.1080/00268977300101481
  40. Ten-no, S. Chem. Phys. Lett. 2000, 330, 175. https://doi.org/10.1016/S0009-2614(00)01067-8
  41. Hino, O.; Tanimura, Y.; Tenno, S. J. Chem. Phys. 2001, 115, 7865 https://doi.org/10.1063/1.1408299
  42. Hino, O.; Tanimura, Y.; Ten-no, S. Chem. Phys. Lett. 2002, 353, 317. https://doi.org/10.1016/S0009-2614(02)00042-8
  43. Ten-no, S.; Hino, O. Int. J. Mol. Sci. 2002, 3, 459. https://doi.org/10.3390/i3050459
  44. Ten-no, S.; Manby, F. R. J. Chem. Phys. to appear. (2003)
  45. Dunning, Jr, T. H. J. Chem. Phys. 1988, 90, 1007. https://doi.org/10.1063/1.456153
  46. Woonm, D. E.; Dunning, Jr, T. H. J. Chem. Phys. 1995, 103, 4572. https://doi.org/10.1063/1.470645
  47. Tao, S. J.; Green, J. H. J. Phys. Chem. 1969, 73, 882. https://doi.org/10.1021/j100724a021

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  2. Correlation-polarization effects in electron/positron scattering from acetylene: A comparison of computational models vol.266, pp.3, 2003, https://doi.org/10.1016/j.nimb.2007.12.019
  3. Polarisation effects in low-energy positron-molecule scattering vol.266, pp.3, 2003, https://doi.org/10.1016/j.nimb.2007.12.055
  4. Evaluation of electron repulsion integral of the explicitly correlated Gaussian-nuclear orbital plus molecular orbital theory vol.521, pp.None, 2003, https://doi.org/10.1016/j.cplett.2011.11.023
  5. Low-energy positron scattering from gas-phase benzene vol.73, pp.9, 2019, https://doi.org/10.1140/epjd/e2019-100058-5