DOI QR코드

DOI QR Code

Two Dimensional Electronic Spectroscopy

  • Fleming, Graham R. (Department of Chemistry, University of California, Berkeley and the Physical Biosciences Division, Lawrence Berkeley National Laboratory) ;
  • Yang, Min-O (Dept. of Chemistry and Institute of Basic Sciences Research, Chungbuk National University) ;
  • Agarwal, Ritesh (Dept. of Chemistry and Chemical Biology, Harvard University) ;
  • Prall, Bradley S. (Department of Chemistry, University of California, Berkeley and the Physical Biosciences Division, Lawrence Berkeley National Laboratory) ;
  • Kaufman, Laura J. (Present Addresses: Dept. of Chemistry and Chemical Biology, Harvard University) ;
  • Neuwahl, Fred (European Laboratory for Non-Linear, Spectroscopy(LENS), University of Florence)
  • Published : 2003.08.20

Abstract

Two different electronically resonant two-dimensional spectroscopies are described. The first, two-color photon echo peak shift spectroscopy, is sensitive to correlations in transition frequency between the initial and probed (final) states. It provides new insight into the mechanism of ultrafast solvation and should prove useful for characterizing dynamics in inhomogeneous systems in general. The second technique, fifth order threepulse scattering, contains two coherence periods whose durations are controlled. The entire two-dimensional surface was recorded for a dye molecule in dilute solution and a photosynthetic light-harvesting complex. The data provide insight into the short-time dynamics of solvation and exciton relaxation, respectively.

Keywords

References

  1. Meech, S. R.; Hoof, A. J.; Weirsna, D. A. Chem. Phys. Lett. 1985,121, 287. https://doi.org/10.1016/0009-2614(85)87180-3
  2. Weiner, A. M.; De Silvestri, S.; Ippen, E. P. J. Opt. Soc. Am. B1985, 2, 654. https://doi.org/10.1364/JOSAB.2.000654
  3. Becker, P. C.; Fragnito, H. L.; Bigot, J.-Y.; Brito Cruz, C. H.; Fork,R. L.; Shank, C. V. Phys. Rev. Lett. 1989, 63, 505. https://doi.org/10.1103/PhysRevLett.63.505
  4. Bigot, J.-Y.; Portella, M. T.; Schoenlein, R. W.; Bardeen, C. J.;Migus, A.; Shank, C. V. Phys. Rev. Lett. 1991, 66, 1138. https://doi.org/10.1103/PhysRevLett.66.1138
  5. Nibbering, E. T. J.; Wiersma, D. A.; Duppen, K. Phys. Rev. Lett.1991, 66, 2464. https://doi.org/10.1103/PhysRevLett.66.2464
  6. Vohringer, P.; Arnett, D. C.; Westervelt, R. A.; Feldstein, M. J.;Scherer, N. F. J. Chem. Phys. 1995, 102, 4027. https://doi.org/10.1063/1.468531
  7. Joo, T.; Albrecht, A. C. Chem. Phys. 1993, 176, 233. https://doi.org/10.1016/0301-0104(93)85020-9
  8. Joo, T.; Jia, Y.; Fleming, G. R. J. Chem. Phys. 1995, 102, 4063. https://doi.org/10.1063/1.468534
  9. Joo, T.; Jia, Y.; Yu, J.-Y.; Lang, M. J.; Fleming, G. R. J. Chem.Phys. 1996, 104, 6089. https://doi.org/10.1063/1.471276
  10. Cho, M.; Yu, J.-Y.; Joo, T.; Nagasawa, Y.; Passino, S. A.; Fleming,G. R. J. Phys. Chem. 1996, 100, 11944. https://doi.org/10.1021/jp9601983
  11. de Boeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A. Chem.Phys. Lett. 1995, 238, 1. https://doi.org/10.1016/0009-2614(95)00452-1
  12. Agarwal, R.; Krueger, B.; Scholes, G. D.; Yang, M.; Yom, J.;Mets, L.; Fleming, G. R. J. Phys. Chem. B 2000, 104, 2908. https://doi.org/10.1021/jp9915578
  13. Agarwal, R.; Yang, M.; Xu, Q.-H.; Fleming, G. R. J. Phys. Chem.B 2001, 105, 1887. https://doi.org/10.1021/jp0031146
  14. Yu, J.-Y.; Nagasawa, Y.; van Grondelle, R.; Fleming, G. R. Chem.Phys. Lett. 1997, 280, 404. https://doi.org/10.1016/S0009-2614(97)01135-4
  15. Agarwal, R.; Rizvi, A. H.; Prall, B. S.; Olsen, J. D.; Hunter, C. N.;Fleming, G. R. J. Phys. Chem. A 2002, 106, 7573. https://doi.org/10.1021/jp014054m
  16. Jimenez, R.; van Mourik, F.; Yu, J. Y.; Fleming, G. R. J. Phys.Chem. B 1997, 101, 7350. https://doi.org/10.1021/jp970299g
  17. Groot, M.-L.; Yu, J.-Y.; Agarwal, R.; Norris, J. R.; Fleming, G. R.JPCB 1998, 102, 5923. https://doi.org/10.1021/jp9808680
  18. Ohta, K.; Yang, M.; Fleming, G. R. J. Chem. Phys. 2001, 115, 7609. https://doi.org/10.1063/1.1403693
  19. Yang, M.; Fleming, G. R. J. Chem. Phys. 1999, 111, 27. https://doi.org/10.1063/1.479359
  20. Yang, M.; Fleming, G. R. J. Chem. Phys. 2000, 113, 2823. https://doi.org/10.1063/1.1305886
  21. Hybl, J. D.; Ferro, A. A.; Jonas, D. M. J. Chem. Phys. 2001, 115,6606. https://doi.org/10.1063/1.1398579
  22. Cho, M.; Fleming, G. R. J. Phys. Chem. 1994, 98, 3478. https://doi.org/10.1021/j100064a033
  23. Mukamel, S. Ann. Rev. Phys. Chem. 2000, 51, 691. https://doi.org/10.1146/annurev.physchem.51.1.691
  24. Faeder, S. M. G.; Jonas, D. J. Phys. Chem. A 1999, 1-3, 10489.
  25. Yang, M.; Fleming, G. R. J. Chem. Phys. 1999, 110, 2983. https://doi.org/10.1063/1.477893
  26. Agarwal, R.; Prall, B. S.; Rizvi, A. H.; Yang, M.; Fleming, G. R. J. Chem. Phys. 2002, 116, 6243. https://doi.org/10.1063/1.1459414
  27. Zwanzig, R. J. Stat. Phys. 1973, 9, 215. https://doi.org/10.1007/BF01008729
  28. Mukamel, S. Principles of Nonlinear Optical Spectroscopy; OxfordUniversity Press: New York, 1995.
  29. Fleming, G. R.; Cho, M. Annu. Rev. Phys. Chem. 1996, 47, 109. https://doi.org/10.1146/annurev.physchem.47.1.109
  30. Jordanides, X. J.; Lang, M. J.; Song, X.; Fleming, G. R. J. Phys.Chem. B 1999, 103, 7995. https://doi.org/10.1021/jp9910993
  31. Lang, M. J.; Jordanides, X. J.; Song, X.; Fleming, G. R. J. Chem.Phys. 1999, 110, 5884. https://doi.org/10.1063/1.478488
  32. Cho, M. H. Phys. Chem. Comm. 2002, 7, 40.
  33. Cho, M. H. J. Chem. Phys. 2001, 114, 8040. https://doi.org/10.1063/1.1363669
  34. Underwood, D. F.; Blank, D. A. J. Phys. Chem. A 2003, 107,956. https://doi.org/10.1021/jp027134e
  35. Jordan, P.; Fromme, P.; Witt, H. T.; Klukas, O.; Saenger, W.;Krauss, N. Nature 2001, 411, 909. https://doi.org/10.1038/35082000
  36. Chitnis, P. R. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52,593. https://doi.org/10.1146/annurev.arplant.52.1.593
  37. McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.; Isaacs, N. W. Nature1995, 374, 517. https://doi.org/10.1038/374517a0
  38. De Caro, C.; Visschers, R. W.; van Grondelle, R.; Völker, S. J. TheJournal of Physical Chemistry 1994, 98, 10584. https://doi.org/10.1021/j100092a032
  39. Hess, S.; Feldchtein, F.; Rabin, A.; Nurgaleev, I.; Pullerits, T.;Sergeev, A.; Sundström, V. Chemical Physics Letters 1993, 216,247. https://doi.org/10.1016/0009-2614(93)90090-N
  40. Jimenez, R.; Dikshit, S. N.; Bradforth, S. E.; Fleming, G. R. J.Phys. Chem. B 1996, 100, 6825. https://doi.org/10.1021/jp953074j
  41. Raetsep, M.; Johnson, T. W.; Chitnis, P. R.; Small, G. J. J. Phys.Chem. B 2000, 104, 836. https://doi.org/10.1021/jp9929418
  42. Mukamel, S. Ann. Rev. Phys. Chem. 2000, 51, 691. https://doi.org/10.1146/annurev.physchem.51.1.691
  43. Noda, I.; Story, G. M.; Marcott, C. Vibrational Spectroscopy 1999,19, 461. https://doi.org/10.1016/S0924-2031(98)00080-0
  44. Kinoshita, S. J. Chem. Phys. 1989, 91, 5175. https://doi.org/10.1063/1.457617
  45. Loring, R. F.; Yan, Y. J.; Mukamel, S. J. Chem. Phys. 1987, 87,5840. https://doi.org/10.1063/1.453507
  46. Mukamel, S. J. Chem. Phys. 1983, 79, 2126. https://doi.org/10.1063/1.446084
  47. Stephens, M. D.; Saven, J. G.; Skinner, J. L. J. Chem. Phys. 1997,106, 2129. https://doi.org/10.1063/1.473144
  48. Kwak, K. W.; Cho, M. H.; Fleming, G. R.; Agarwal, R.; Prall, B.S. Bull. Korean Chem. Soc. 2003, 24, In press.
  49. Joo, T.; Jia, Y.; Fleming, G. R. J. Chem. Phys. 1995, 102, 4063. https://doi.org/10.1063/1.468534
  50. Neuwahl, F.; Kaufman, L. J.; Agarwal, R.; Fleming, G. R.unpublished results.
  51. Kennis, J. T. M.; Streltsov, A. M.; Permentier, H.; Aartsma, T. J.;Amesz, J. The Journal of Physical Chemistry B 1997, 101, 8369. https://doi.org/10.1021/jp971497a
  52. Yang, M.; Agarwal, R.; Fleming, G. R. J. Photochem. Photobio. A2001, 142, 107. https://doi.org/10.1016/S1010-6030(01)00504-4
  53. Yang, M.; Fleming, G. R. Chem. Phys. 2002, 275, 355. https://doi.org/10.1016/S0301-0104(01)00540-7
  54. Hybl, J. D.; Faeder, S. M. G.; Albrecht, A. W.; Tolbert, C. A.;Green, D. C.; Jonas, D. M. J. Lumin. 2000, 126, 87.
  55. de Boeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A. Chem.Phys. Lett. 1995, 247, 264. https://doi.org/10.1016/0009-2614(95)01217-6
  56. Goodno, G. D.; Daducs, G.; Miller, R. J. D. J. Opt. Soc. Am. B1998, 15, 1791. https://doi.org/10.1364/JOSAB.15.001791
  57. Khalil, M.; Demirdoevon, N.; Golonzka, O.; Fecko, C. J.;Tokmakoff, A. J. Phys. Chem. A 2000, 104, 5711. https://doi.org/10.1021/jp994455q
  58. Kaufman, L. J.; Heo, J. Y.; Zeigler, L. D.; Fleming, G. R. Phys.Rev. Lett. 2002, 88, 207.
  59. Xu, Q. H.; Ma, Y. Z.; Fleming, G. R. Chem. Phys. Lett. 2001, 338,254. https://doi.org/10.1016/S0009-2614(01)00281-0

Cited by

  1. Two-color Transient Grating Spectroscopy of a Two-level System vol.24, pp.8, 2003, https://doi.org/10.5012/bkcs.2003.24.8.1069
  2. The integrated photon echo and solvation dynamics. II. Peak shifts and two-dimensional photon echo of a coupled chromophore system vol.123, pp.11, 2003, https://doi.org/10.1063/1.1955444
  3. Exciton Analysis in 2D Electronic Spectroscopy vol.109, pp.21, 2003, https://doi.org/10.1021/jp050788d
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Coherent Two-Dimensional Optical Spectroscopy vol.108, pp.4, 2008, https://doi.org/10.1021/cr078377b