DOI QR코드

DOI QR Code

Theoretical Study on the Pyrolysis of Sulphonyl Oximes in the Gas Phase

  • Published : 2003.06.20

Abstract

The reaction mechanism of the pyrolysis of sulphonyl oximes ($CH_3-C_6H_4-S(O)_2O-N=C(H)-C_6H_4Y$), in the gas phase is studied theoretically at HF/3-21G, ONIOM (B3LYP/6-31G**:HF/3-21G) and ONIOM (MP2/6- 31G**:HF/3-21G) levels. All the calculations show that the thermal decomposition of sulphonyl oximes is a concerted asynchronous process via a six-membered cyclic transition state. The activation energies (Ea) predicted by ONIOM (B3LYP/6-31G**: HF/3-21G) method are in good agreement with the experimental results for a series of tosyl arenecarboxaldoximes. Five para substituents, Y = $OCH_3$, $CH_3$, H, Cl, and $NO_2$, are employed to investigate the substituent effect on the elimination reaction. Linear Hammett correlations are obtained in all calculations in contrast to the experimental finding.

Keywords

References

  1. Al-Awadi, N. A.; Elnagdi, M. H.; Kaul, K.; Ilingovan, S.; El-Dusouqni, O. M. E. Tethahedron 1998, 54, 4633. https://doi.org/10.1016/S0040-4020(98)00179-3
  2. Al-Awadi, N. A.; Elnagdi, M. H.; Kaul, K.; Ilingovan, S.; El-Dusouqni, O. M. E. J. Phys. Org. Chem. 1999, 12, 654. https://doi.org/10.1002/(SICI)1099-1395(199908)12:8<654::AID-POC168>3.0.CO;2-L
  3. Al-Awadi, N. A.; Elnagdi, M. H.; Al-Awadhi, H. A.; El-Dusouqni,O. M. E. Int. J. Chem. Kinet. 1998, 30, 457. https://doi.org/10.1002/(SICI)1097-4601(1998)30:7<457::AID-KIN1>3.0.CO;2-R
  4. Al-Awadi, N. A.; El-Dusouqni, O. M. E.; Mathew, T. Int. J. Chem.Kinet. 1997, 29, 289. https://doi.org/10.1002/(SICI)1097-4601(1997)29:4<289::AID-KIN7>3.0.CO;2-Q
  5. Al-Awadi, N. A.; Elnagdi, M. H.; Mathew, T.; El-Gamry, I.;Khalik, M. A. Int. J. Chem. Kinet. 1996, 28, 741. https://doi.org/10.1002/(SICI)1097-4601(1996)28:10<741::AID-KIN4>3.0.CO;2-N
  6. Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch,M. J. J. Mol. Struct. (THEOCHEM) 1999, 461, 1. https://doi.org/10.1016/S0166-1280(98)00475-8
  7. Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419. https://doi.org/10.1002/1096-987X(200012)21:16<1419::AID-JCC1>3.0.CO;2-C
  8. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  9. Lee, S.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
  10. Hehre, W. J.; Ditchfield, R. D.; Pople, J. A. J. Chem. Phys. 1972,56, 2257. https://doi.org/10.1063/1.1677527
  11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery,J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J.M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe,M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres,J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J.A. Gaussian 98, Revision A.7; Gaussian Inc.: Pittsburgh PA, 1998.
  12. Fukui, K. J. Phys. Chem. 1970, 74, 4161. https://doi.org/10.1021/j100717a029
  13. Varandas, A. J. C.; Formosinho, S. J. F. J. Chem. Soc. FaradayTrans. 1986, 2, 282.
  14. Rotinov, A.; Chuchani, G.; Andres, J.; Domingo, L. R.; Safont, V.S. Chem. Phys. 1999, 246, 1. https://doi.org/10.1016/S0301-0104(99)00137-8
  15. Lim, C. C.; Xu, Z. P.; Huang, H. H.; Mok, C. Y.; Chin, W. S.Chem. Phys. Lett. 2000, 325, 433. https://doi.org/10.1016/S0009-2614(00)00715-6
  16. Moyano, A.; Pericàs, M. A.; Valentí, A. J. Org. Chem. 1989, 54,573. https://doi.org/10.1021/jo00264a014
  17. Pauling, L. J. Am. Chem. Soc. 1947, 69, 542. https://doi.org/10.1021/ja01195a024
  18. Xue, Y.; Kang, C. H. ; Kim, C. K.; Lee, I. J. Comput. Chem. 2003,24, 963. https://doi.org/10.1002/jcc.10265
  19. Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of OrganicChemistry; Plenum Press: New York, 1975; p 219.

Cited by

  1. Product and Mechanism of Gas-phase Pyrolysis of 2-arylidinehydrazinopyrimidines: Interesting Route to Condensed Heterocycles[1] vol.52, pp.6, 2014, https://doi.org/10.1002/jhet.2276
  2. Substituent Effects on the Gas-Phase Pyrolyses of 2-Substituted Ethyl N,N-Dialkylcarbamates: A Theoretical Study vol.28, pp.6, 2003, https://doi.org/10.5012/bkcs.2007.28.6.1031
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  4. Theoretical studies on the gas-phase pyrolysis of 2-trimethylsilylethanol vol.941, pp.1, 2003, https://doi.org/10.1016/j.theochem.2009.11.017