DOI QR코드

DOI QR Code

Ruthenium-Catalyzed Synthesis of Quinolines from Anilines and Tris(3-hydroxypropyl)amine via Amine Exchange Reaction

  • Cho, Chan-Sik (Research Institute of Industrial Technology, Kyungpook National University) ;
  • Kim, Dong-Tak (Department of Industrial Chemistry, College of Engineering, Kyungpook National University) ;
  • Kim, Tae-Jeon (Department of Industrial Chemistry, College of Engineering, Kyungpook National University) ;
  • Shim, Sang-Chul (Department of Industrial Chemistry, College of Engineering, Kyungpook National University)
  • Published : 2003.07.20

Abstract

Keywords

References

  1. Yoshimura, N.; Moritani, I.;Shimamura, T.; Murahashi, S.-I. J. Am. Chem. Soc. 1973, 95,3038. https://doi.org/10.1021/ja00790a064
  2. Murahashi, S.-I.; Hirano, T.; Yano, T. J. Am. Chem. Soc.1978, 100, 348. https://doi.org/10.1021/ja00469a093
  3. Shvo, Y.; Laine, R. M. J. Chem. Soc., Chem.Commun. 1980, 753.
  4. Khai, B.-T.; Concilio, C.; Porzi, G. J.Organomet. Chem. 1981, 208, 249. https://doi.org/10.1016/S0022-328X(00)82680-7
  5. Khai, B.-T.; Concilio, C.;Porzi, G. J. Org. Chem. 1981, 46, 1759. https://doi.org/10.1021/jo00321a056
  6. Arcelli, A.; Khai, B.-T.; Porzi, G. J. Organomet. Chem. 1982, 231, C31. https://doi.org/10.1016/S0022-328X(00)81961-0
  7. Murahashi,S.-I.; Kondo, K.; Hakata, T. Tetrahedron Lett. 1982, 23, 229. https://doi.org/10.1016/S0040-4039(00)86792-1
  8. Laine, R. M.; Thomas, D. W.; Cary, L. W. J. Am. Chem. Soc.1982, 104, 1763. https://doi.org/10.1021/ja00370a064
  9. Jung, C. W.; Fellmann, J. D.; Garrou, P. E.Organometallics 1983, 2, 1042. https://doi.org/10.1021/om50002a018
  10. Murahashi, S.-I. Angew.Chem., Int. Ed. 1995, 34, 2443. https://doi.org/10.1002/anie.199524431
  11. Cho, C. S.; Lim, H. K.; Shim, S. C.; Kim, T.-J.; Choi, H.-J.Chem. Commun. 1998, 995.
  12. Cho, C. S.; Kim, J. H.; Shim, S.C. Tetrahedron Lett. 2000, 41, 1811. https://doi.org/10.1016/S0040-4039(00)00035-6
  13. Cho, C. S.; Kim, J. H.;Kim, T.-J.; Shim, S. C. Tetrahedron 2001, 57, 3321. https://doi.org/10.1016/S0040-4020(01)00202-2
  14. Cho, C.S.; Kim, T.-K.; Yoon, S. W.; Kim, T.-J.; Shim, S. C. Bull. KoreanChem. Soc. 2001, 22, 545.
  15. Cho, C. S.; Oh, B. H.; Shim, S. C. Tetrahedron Lett. 1999, 40,1499. https://doi.org/10.1016/S0040-4039(98)02661-6
  16. Cho, C. S.; Oh, B. H.; Kim, J. S.; Kim, T.-J.; Shim, S. C.Chem. Commun. 2000, 1885.
  17. Cho, C. S.; Kim, T. K.; Kim, B.T.; Kim, T.-J.; Shim, S. C. J. Organomet. Chem. 2002, 650, 65. https://doi.org/10.1016/S0022-328X(02)01170-1
  18. Cho, C. S.; Oh, B. H.; Shim, S. C. J. Heterocycl. Chem. 1999, 36,1175. https://doi.org/10.1002/jhet.5570360510
  19. Cho, C. S.; Kim, T.-K.; Kim, T.-J.; Shim, S. C.; Yoon, N.S. J. Heterocycl. Chem. 2002, 39, 291. https://doi.org/10.1002/jhet.5570390207
  20. Cho, C. S.; Kim, J. S.;Oh, B. H.; Kim, T.-J.; Shim, S. C.; Yoon, N. S. Tetrahedron 2000,56, 7747. https://doi.org/10.1016/S0040-4020(00)00694-3
  21. Cho, C. S.; Kim, T. K.; Choi, H.-J.; Kim, T.-J.; Shim,S. C. Bull. Korean Chem. Soc. 2002, 23, 541. https://doi.org/10.5012/bkcs.2002.23.4.541
  22. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. J. Org. Chem.2001, 66, 9020. https://doi.org/10.1021/jo0108459
  23. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C.Chem. Commun. 2001, 2576.
  24. Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. Tetrahedron Lett. 2002, 43, 7987. https://doi.org/10.1016/S0040-4039(02)01625-8
  25. Cho, C. S.; Kim, B. T.; Lee, M. J.; Kim, T.-J.; Shim, S. C. Angew.Chem., Int. Ed. 2001, 40, 958. https://doi.org/10.1002/1521-3773(20010302)40:5<958::AID-ANIE958>3.0.CO;2-4
  26. Cho, C. S.; Kim, J. H.; Choi, H.-J.; Kim, T.-J.; Shim, S. C.Tetrahedron Lett. 2003, 44, 2975. https://doi.org/10.1016/S0040-4039(03)00396-4
  27. Murahashi, S.-I.; Yoshimura, N.; Tsumiyama, T.; Kojima, T. J.Am. Chem. Soc. 1983, 105, 5002. https://doi.org/10.1021/ja00353a025
  28. Renaud, F.; Decurnex, C.; Piguet, C.; Hopfgartner, G. J. Chem.Soc., Dalton Trans. 2001, 1863.
  29. Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98,2599. https://doi.org/10.1021/cr9403695
  30. Yi, C. S.; Liu, N. Synlett 1999, 281.
  31. Tsuji, Y.; Nishimura, H.; Huh, K.-T.; Watanabe, Y. J. Organomet.Chem. 1985, 286, C44. https://doi.org/10.1016/0022-328X(85)80058-9
  32. Tsuji, Y.; Huh, K.-T.; Watanabe, Y. J.Org. Chem. 1987, 52, 1673. https://doi.org/10.1021/jo00385a006
  33. Holts,M. S.; Wilson, W. L.; Nelson, J. H. Chem. Rev. 1989, 89, 11. https://doi.org/10.1021/cr00091a002
  34. Rice, R. G.; Kohn, E. J. J. Am. Chem. Soc. 1955, 77, 4052. https://doi.org/10.1021/ja01620a026
  35. Murahashi, S.-I.; Shimamura, T.; Moritani, I. J. Chem. Soc.,Chem. Commun. 1974, 931.
  36. Baiker, A.; Richarz, W.Tetrahedron Lett. 1977, 1937.
  37. Grigg, R.; Mitchell, T. R. B.;Sutthivaiyakit, S.; Tongpenyai, N. J. Chem. Soc., Chem. Commun.1981, 611.
  38. Watanabe, Y.; Tsuji, Y.; Ohsugi, Y. TetrahedronLett. 1981, 22, 2667. https://doi.org/10.1016/S0040-4039(01)92965-X
  39. Arcelli, A.; Khai, B.-T.; Porzi, G. J.Organomet. Chem. 1982, 235, 93. https://doi.org/10.1016/S0022-328X(00)85724-1
  40. Watanabe, Y.; Tsuji, Y.;Ohsugi, Y.; Shida, J. Bull. Chem. Soc. Jpn. 1983, 56, 2452. https://doi.org/10.1246/bcsj.56.2452
  41. Watanabe, Y.; Tsuji, Y.; Ige, H.; Ohsugi, Y.; Ohta, T. J. Org. Chem.1984, 49, 3359. https://doi.org/10.1021/jo00192a021
  42. Tsuji, Y.; Takeuchi, R.; Ogawa, H.; Watanabe,Y. Chem. Lett. 1986, 293.
  43. Vultier, R.; Baiker, A.; Wokaun, A.Appl. Catal. 1987, 30, 167. https://doi.org/10.1016/S0166-9834(00)81021-0
  44. Bitsi, G.; Jenner, G. J. Organomet.Chem. 1987, 330, 429. https://doi.org/10.1016/S0022-328X(00)99055-7
  45. Marsella, J. A. J. Org. Chem. 1987, 52,467. https://doi.org/10.1021/jo00379a035
  46. Huh, K.-T.; Tsuji, Y.; Kobayashi, M.; Okuda, F.;Watanabe, Y. Chem. Lett. 1988, 449.
  47. Ganguly, S.; Joslin, F. L.;Roundhill, D. M. Inorg. Chem. 1989, 28, 4562. https://doi.org/10.1021/ic00325a004
  48. Watanabe, Y.;Morisaki, Y.; Kondo, T.; Mitsudo, T. J. Org. Chem. 1996, 61,4214. https://doi.org/10.1021/jo9516289
  49. Kim, G.; Lee, D. G.; Chang, S. Bull. Korean Chem. Soc. 2001, 22,943.
  50. Omae, I. Chem. Rev. 1979, 79, 287. https://doi.org/10.1021/cr60320a001

Cited by

  1. Ruthenium-catalysed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols vol.9, pp.2, 2011, https://doi.org/10.1039/C0OB00676A
  2. Amino-alcohol cyclization: selective synthesis of lactams and cyclic amines from amino-alcohols vol.4, pp.1, 2014, https://doi.org/10.1039/C3CY00513E
  3. a Cross-Dehydrogenative Coupling of (Bio)available Alcohols and Aminoarenes vol.357, pp.2-3, 2015, https://doi.org/10.1002/adsc.201400815
  4. Ruthenium-catalyzed formal alkyl group transfer: Synthesis of quinolines from nitroarenes and alkylammonium halides vol.41, pp.3, 2004, https://doi.org/10.1002/jhet.5570410320
  5. Borrowing Hydrogen in the Activation of Alcohols vol.349, pp.10, 2007, https://doi.org/10.1002/adsc.200600638
  6. Ruthenium-Catalyzed Synthesis of Quinolines from Anilines and Tris(3-hydroxypropyl)amine via Amine Exchange Reaction. vol.34, pp.51, 2003, https://doi.org/10.1002/chin.200351136
  7. Vapour-phase synthesis of 2-methyl- and 4-methylquinoline over BEA* zeolites vol.239, pp.2, 2006, https://doi.org/10.1016/j.jcat.2006.02.015