Synthesis and Biological Evaluation of 3'-Deazapaclitaxel

Jae Kwan Lee, Jun Heo, Mahn-Joo Kim, ${ }^{\circ}$ Hwan Mook Kim, ${ }^{*}$ and Sang Han Lee ${ }^{*}$
Department of Chemistrv. Division of Holecular and Life Sciences, Pohang Chiversiv of Science and Technologv, Pohang. Kvingbuk 790-784, Korea
${ }^{\dagger}$ Biopotency Evaluation Laboratory, Advanced Biomaterials Research Center. Korea Research Institute of Bioscience and Biotechnologv. Yusong-gu. Daejeon 305-333. Korea ReceivedMarch 25, 2003

Key Words: Paclitaxel. 3'-Deazapaclitaxel. Sy̦nthesis. Biological activity

Paclitaxel (1). originally isolated from the Pacific yew tree Toxus brevofolia, ${ }^{1}$ has attracted much attention as a target for chemical and medicinal research ${ }^{-3}$ due to its structural complexity and biological activity. ${ }^{4}$ It has been shown to have strong antitumor activity against a variety' of malignancies including ovarian. breast. and lung cancers. ${ }^{5}$ The
structure-activity relationship (SAR) studies have demonstrated that the side chain at the C -13 position of A-ring in paciltavel is essential for the anticancer activity. ${ }^{6}$ A number of analogues with modifications at the side chain have been synthesized and evaluated for the biological activity. ${ }^{7}$ A representative example is docetaxel 2 with a $N-t$-Boc moiety

3' - Deaza - Paclitaxel 3

8

6

7
i iv
${ }^{7}$ iv

Paclitaxlel 1: $\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{Ac}$
Docetaxel $2: R={ }^{\mathrm{t}} \mathrm{BuO}, \mathrm{R}^{\cdot}=\mathrm{H}$

iii

Scheme 1. The Synthesis of Deazapaclitaxel. Reagents and conditions; (i) $\mathrm{RuCl}_{3} / \mathrm{NaIO}_{4} / \mathrm{CCl}_{4}-\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O} / \mathrm{tt}, 85 \%$: (ii) DCCDMAP/ toluene-THF/rt, 65%; (iii) I $\mathrm{N} \mathrm{HCl} / \mathrm{CH}_{3} \mathrm{CN} / 0^{\circ} \mathrm{C}, 87 \%$; (iv) $\mathrm{H}_{2} / \mathrm{Raney}-\mathrm{Ni} / \mathrm{B}(\mathrm{OH})_{3} / \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O} / 0^{\circ} \mathrm{C}, 72 \%$; (v) $\mathrm{HF}-\mathrm{Py} / \mathrm{O}^{\circ} \mathrm{C} / \mathrm{rt}, 88 \%$.

Table 1. In vio activities ($\mathrm{IC}_{\text {so }} \mu \mathrm{g} / \mathrm{mL}$)" of paclitavel analogs ($\mathbf{3 a}, \mathbf{3 b}$, and $\mathbf{8}$) against human cancer cell lines

Compound	MCF7	MDA-MB-435	BT-549	OVCAR-4	PC-3	LOX-IMVI	UACC62	HCT-I16	A549
3a	5	>10	>10	10	6	>10	>10	>10	>10
3b	9	>10	>10	>10	7	>10	>10	>10	>10
8	>10	>10	>10	>10	>10	>10	>10	>10	>10
Paclitaxel	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

"The concentration which produces $50^{\circ} \%$ inhibition of cell proliferation after 48 h of incubation.
replacing the N-benzoyl group at the 3 'position of the 13 side chain. ${ }^{\text {s }}$ The t-Boc analogue has been shown to have some increased potency in cytotoxicity or tubulin polymerization assays. ${ }^{9}$ As an extension of our continuing efforts in paclitaxel chemistry, ${ }^{10}$ we became interested in paclitaxel analogues with new structural modifications at the 13 -side chain: particularly, the one (3) with no nitrogen at the 3^{\prime} position. We herein report the results from the studies on its synthesis and biological evaluation.
The synthesis of 3 started from trans-3,4-diphenyl-2-isoxazoline-5-methanol (4) which had been prepared in three steps from benzaldehyde according to the literature procedure. ${ }^{11}$ The racenic isoxazoline derivative was first oxidized using RuCl_{3} and NaIO_{4} in the $2: 2: 3$ mixture of $\mathrm{CCl}_{4}-\mathrm{CH}_{3} \mathrm{CN}$-Phosphate Buffer (pH 7.2) ${ }^{12}$ to give trans-3.4-diphenyl-5-carboxy-2-isoxazoline (5) in good yield (85%). The isoxazoline carboxylic acid was then coupled using DCC/DMAP with 7 -TES-baccatin III (6$)^{13}$ to afford 7 as a $6:+$ diastereomeric mixture in 65% yield. The triethylsilyl group at C .7 of 7 was removed readily under the acidic conditions to yield 8 in 87% yield. The isoxazoline ring in the side chain of 7 was cleaved by catalytic hydrogenolysis $\left(\mathrm{H}_{3} . \mathrm{B}(\mathrm{OH})_{3} \text {, Raney-Ni. } 7: 1 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)^{14}$ to produce a misture of two separable diastereomers in 72% yield (9 a . major product. 47%; 9b. minor product 25%). Finally, the diastereomers were separately desilylated with the treatment of HF/Py to obtain two diastereomers (3a and 3b) of the target molecule in 88% yield (Scheme 1). The absolute configurations of the stereocenters at the side chain of each diastereomer were not established.

The biological activities of deazapaclitaxel isomers (3a and 3b) and isoxazoline intermediate (8) were evaluated in in vitro cytotoxicity assays against several human tumor cell lines. The results are given in Table 1. All of them exhibited no significant anticancer activities in all assays. The deaza analogs displayed very weak activities against a few cell lines and no activities against most cell lines. The isoxazoline molecule was virtually inactive against all the cell lines. These observations clearly indicate that l) the amide functionality of the side chain is an essential structural element required for the anticancer activity: and 2) the major structural modification of the C-13 side chain such as the incorporation of a ring results in the complete loss of the anticancer activity:

Experimental Section

Preparation of compound 5. trans-3.4-Diphenyl-2-iso-
xazoline- 5 -methanol ($\mathbf{4}$) ($50 \mathrm{mg}, 0.197 \mathrm{mmol}$) was dissolved in $\mathrm{CCl}_{4} / \mathrm{CH}_{3} \mathrm{CN} /$ phosphate buffer (pH 7.5) $(0.35 \mathrm{~mL} / 0.35$ $\mathrm{mL} / 0.5 \mathrm{~mL} .2 / 2 / 3$). To this solution at $0^{\circ} \mathrm{C}$ was added RuCl_{3} (2 mg .0 .00985 mmol), $\mathrm{NaIO}_{4}(42 \mathrm{mg}, 0.59 \mathrm{I} \mathrm{mmol}$). After stirring at room temperature for 12 h , the reaction mixture was diluted with EtOAc (50 mL) and extracted with saturated $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$. To the aqueous solution was added $3 N \mathrm{HCl}(120 \mathrm{~mL})$ and the resulting mixture was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The organic layer was dried and concentrated in vacto to yield 5 ($45 \mathrm{mg}, 85 \%$): m.p. 187-189 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3 .}$ ppm) 7.61 (m, $2 \mathrm{H}) .7 .26-7.38(\mathrm{~m} .8 \mathrm{H}), 5.08(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$. ppm) 172.2 . 158.4. 138.5, 130.5, 129.7, 129.0. 128.9. 128.4, 127.8. $126.3,86.7,58.5$. HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}+\mathrm{H}$ 268.0974 , obsd 268.0975.

Preparation of compound 7. To a toluene/THF (4 mL , $\mathrm{I} / 3$. v/v) mixture of 7 -TES-baccatin III 6 (100 mg .0 .14 mmol) and 5 ($75 \mathrm{mg}, 0.28 \mathrm{mmol}$) were added DCC (56 mg . 0.28 mmol) and DMAP (17 mg .0 .14 mmol). The reaction mixture was stirred at room temperature for 10 h and then subjected to silica gel chromatography (50% ethyl acetate in hexane) to afford 7 ($96 \mathrm{mg} .65 \%$): m.p. $86-88{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$, ppm) 8.09 (d. $J=8.28 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61-7.64$ $(\mathrm{m}, 3 \mathrm{H}) .7 .46-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.38(\mathrm{~m} .8 \mathrm{H}) .6 .44(\mathrm{~s} .1 \mathrm{H})$. $6.27(\mathrm{~m} .1 \mathrm{H}), 5.69(\mathrm{~d}, \mathrm{~J}=6.98 \mathrm{~Hz} .1 \mathrm{H}), 5.28(\mathrm{~d} . J=3 \mathrm{~Hz}$, 0.35 H. minor). $5.15 \mathrm{~d}, J=2 \mathrm{~Hz}, 0.65 \mathrm{H}$, major), 5.04 (d. $J=$ $4.3 \mathrm{~Hz}, 0.35 \mathrm{H}$. minor). 5.02 (d. $J=4.2 \mathrm{~Hz}, 0.65 \mathrm{H}$. major). $4.95(\mathrm{~m} .1 \mathrm{H}) .4 .74(\mathrm{~s} . \mathrm{OH}) .4 .50(\mathrm{~m} .1 \mathrm{H}) .4 .31(\mathrm{~d} . J=8.27$ Hz. 1 H). 4.15 (d. J $=8.26 \mathrm{~Hz}, 1 \mathrm{H}) .3 .86(\mathrm{~d} . J=6.99 .1 \mathrm{H})$ $2.59(\mathrm{~m}, 1 \mathrm{H}) .2 .32$ (s. 3 H). 2.30 (m, 2H). 2.16 (s. 3H). 2.02 $(\mathrm{s} .3 \mathrm{H}) .1 .90(\mathrm{~m} .1 \mathrm{H}) .1 .70(\mathrm{~s} .3 \mathrm{H}) .1 .23(\mathrm{~s} .3 \mathrm{H}) .1 .20(\mathrm{~s} .3 \mathrm{H})$, $0.93(\mathrm{~m}, 9 \mathrm{H}), 0.55(\mathrm{~m} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$. ppm) 202.5, 171.3. 170.7. 169.9. 167.8. 159.0. 140.9. 138.1. $134.5,134.45 .134 .4,130.8,130.4,130.3,129.5 .129 .4$. 129.3. 129.2. 128.31. 128.26. 128.23. 87.2. 87.0. 85.0.84.9. 81.6.81.4. 79.7. 79.5. 78.9. 77.9. 77.5, 75.8. 75.7. 75.6. 72.9. $72.3,59.3,59.2 .58 .2,47.6,43.9 .37 .935 .8,27.3,23.2,22.6$. 21.8. 21.6. 21.5. 15.3. 15.1. 10.77, 10.72. 7.4. 6.0. HRMS m / z calcd for $\mathrm{C}_{53} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{NSi}+\mathrm{H} 950.4147$. obsd 950.4152 .

Preparation of compound 8. Compound $7(50 \mathrm{mg} .0 .056$ mumol) was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ and treated at $0^{\circ} \mathrm{C}$ with $1 N \mathrm{HCl}(0.5 \mathrm{~mL})$. After stirring at $0^{\circ} \mathrm{C}$ for 8 h , the reaction mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$ and washed with saturated solution $\mathrm{NaHCO}_{3}(2 \times 50 \mathrm{~mL})$ and then brine (50 mL). The organic layer was dried and concentrated in vacuo. Silica gel chromatography ($1: 1$ ethyl acetatehexane) gave $8(10 \mathrm{mg} .88 \%)$: m.p. $146-148^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) 8.07 (d. $J=7.32 \mathrm{~Hz} .2 \mathrm{H}$). $7.60-7.63$ (m. 3 H), $7.46-7.5 \mathrm{I}$ (m. 2 H). $7.27-7.38$ (m. 8 H). $6.30(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{~d} . J=7.11 \mathrm{~Hz} .1 \mathrm{H}) .5 .23(\mathrm{~d}, J=4.23 \mathrm{~Hz}$. 0.35 H , minor). 5.16 (d. $J=4.32 \mathrm{~Hz}, 0.65 \mathrm{H}$. major). 5.04 (d. $J=4.32 \mathrm{~Hz}, 0.35 \mathrm{H}$. minor), 5.02 (d. $J=4.29 \mathrm{~Hz}, 0.65 \mathrm{H}$. major), $4.97(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~m}, \mathrm{IH}), 4.31(\mathrm{~d}, J=8.3+\mathrm{Hz}$. $1 \mathrm{H}), 4.15(\mathrm{~d}, J=8.31 \mathrm{~Hz} .1 \mathrm{H}), 3.84(\mathrm{~d} . J=7.11 \mathrm{~Hz}, \mathrm{IH})$. $2.57(\mathrm{~m}, \mathrm{IH}) .2 .33(\mathrm{~s} .3 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}) .2 .24(\mathrm{~s} .1 .5 \mathrm{H}) .2 .22$ $(\mathrm{s} .1 .5 \mathrm{H}) .1 .89(\mathrm{~s} .3 \mathrm{H}), 1.76(\mathrm{~m} .1 \mathrm{H}) .1 .67(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}$. 6 H): ${ }^{13} \mathrm{C} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $204.4,204.3$ 171.9. 171.2. 170.9. 170.8, 167.7. 159.03, 143.2. 138.0. 137.9. 134.4. 133.7. $131.2,130.8,130.4,130.3,130.0 .129 .9$. 129.5. 129.4. 129.3, 129.2, 129.1. 128.25, 128.2, 87.2, 86.98. 85.2. 85.13. 81.5, 81.4. 80.2. 79.9. 78.7. 77.91. 77.50, $76.2,75.9 .75 .7,72.8,72.3,59.3,59.2,59.1,58.4,46.4,43.9$. $36.4,36.2,32.3,30.4,27.5,23.3,23.1,22.6,21.5,15.8,15.7$, 10.3: HRMS $\mathrm{m} / 2$ calcd for $\mathrm{C}_{47} \mathrm{H}_{500} \mathrm{O}_{13} \mathrm{~N}+\mathrm{H} 836.3282$. obsd 836.3285

Preparation of compounds 9 a and $9 \mathbf{9}$. To a $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($2 \mathrm{~mL}, 7 / 1, \mathrm{v} / \mathrm{v}$) solution of $7(50 \mathrm{mg}, 0.0526 \mathrm{mmol}$) were added Raney-Ni ($10 \mathrm{~mol} \%$) and $\mathrm{B}(\mathrm{OH})_{s}$ ($13 \mathrm{mg}, 0.21$ mmol). Under the pressure of H_{2} gas (1 atm , balloon), the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 8 h . The reaction misture was then diluted with EtOAc (50 mL). filtered to remove Raney-Ni, and washed with $1 N \mathrm{HCl}(50 \mathrm{~mL})$ and brine (50 mL). The organic layer was dried and concentrated in vacto. The residue was chromatographed (1:1 ethyl acetatehexane) to give the desired products 9 a ($23 \mathrm{mg}, 47 \%$) and 9 b ($13 \mathrm{mg} .25 \%$).
9a: m.p. $134-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$. ppm) $8.07(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 2 \mathrm{H}) .7 .90(\mathrm{~d} . J=7.48 \mathrm{~Hz} .2 \mathrm{H}) .7 .59-$ $7.64(\mathrm{~m}, \mathrm{lH}) .7 .46-7.51(\mathrm{~m}, 3), 7.32-7.3(\mathrm{~m}, 7 \mathrm{H}) .6 .48(\mathrm{~s}$. $1 \mathrm{H}), 6.06(\mathrm{~m}, \mathrm{IH}) .5 .64(\mathrm{~d} . J=6.99 \mathrm{~Hz}, \mathrm{IH}) .5 .21(\mathrm{~d} . J=$ $5.18 \mathrm{~Hz} .1 \mathrm{H}), 4.94(\mathrm{~d} . J=8.67 \mathrm{~Hz} .1 \mathrm{H}), 4.67(\mathrm{dd}, J=9.81$. $5.18 \mathrm{~Hz}, 1 \mathrm{H}) .4 .50(\mathrm{~m} . \mathrm{IH}) .4 .27(\mathrm{~d}, J=8.20 \mathrm{~Hz}, \mathrm{IH}) .4 .13$ (d. $J=8.29 \mathrm{~Hz}, \mathrm{IH}$). 3.93 (d. $J=10.08 . \mathrm{OH}$). 3.82 (d. $J=$ $6.89,1 \mathrm{H}) .2 .53(\mathrm{~m} .1 \mathrm{H}) .2 .32(\mathrm{~s}, 3 \mathrm{H}), 2.27 .2 .35(\mathrm{~m}, 2 \mathrm{H})$. 2.19 (s. 3H). 2.17 (s. 3H). 1.87 (m. 1H). 1.68 (s. 3H). 1.20 (s. $3 \mathrm{H}) .1 .14(\mathrm{~s} .3 \mathrm{H}) .0 .94(\mathrm{~m} .9 \mathrm{H}) .0 .59(\mathrm{~m} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3 .}, \mathrm{ppm}$) 202.6. 200.8. 173.6. 170.9. 169.8. 167.7. 141.3. $136.2,135.6 .134 .44,134.36,134.1,130.7$. 130.0. 129.9. 129.8, 129.3, 129.2, 128.8. 84.9. 81.4. 79.7. 77.1. $75.6,75.4 .72 .9 .71 .7 .59 .1,57.5,47.5,43.8,37.9 .35 .9$. 27.2, 22.9. 21.6, 21.5. 15.2 10.7.7.4. 5.95: HRMS m/z calcd for $\mathrm{C}_{53} \mathrm{H}_{64} \mathrm{O}_{14} \mathrm{Si}+\mathrm{H} 953.4144$, obsd 953.4137
9b: m.p. $124-127^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ppm) 8.07 (d. $J=7.32 \mathrm{~Hz}, 2 \mathrm{H}) .7 .94$ (d. $J=7.44 \mathrm{~Hz} .2 \mathrm{H}) .7 .58-$ $7.63(\mathrm{~m} .1 \mathrm{H}) .7 .45-7.50(\mathrm{~m} .3 \mathrm{H}) .7 .35-7.40(\mathrm{~m} .7 \mathrm{H}) .6 .31(\mathrm{~s}$. $1 \mathrm{H}) .6 .03(\mathrm{~m}, 1 \mathrm{H}) .5 .64(\mathrm{~d} . J=6.93 \mathrm{~Hz}, 1 \mathrm{H}) .5 .17(\mathrm{~d} . J=$ $6.45 \mathrm{~Hz} .1 \mathrm{H}) .4 .96(\mathrm{~d} . J=8.31 \mathrm{~Hz} .1 \mathrm{H}) .4 .79(\mathrm{~m} .1 \mathrm{H}) .4 .69$ $(\mathrm{s} . \mathrm{OH}) .4 .38(\mathrm{~m} . \mathrm{lH}) .4 .29(\mathrm{~d} . J=8.37 \mathrm{~Hz} .1 \mathrm{H}) .4 .15(\mathrm{~d} . J=$ $8.28 \mathrm{~Hz}, 1 \mathrm{H}) .3 .83(\mathrm{~d} . J=7.47 .1 \mathrm{H}) .3 .74(\mathrm{~d}, J=6.90, \mathrm{OH})$. $2.55(\mathrm{~m}, 1 \mathrm{H}) .2 .43(\mathrm{~s} .3 \mathrm{H}) .2 .31(\mathrm{~m}, 2 \mathrm{H}) .2 .14(\mathrm{~s} .3 \mathrm{H}) .1 .88$ (m. 1 H) 1.67 (s. 3H). 1.43 (s. 3H). 1.18 (s. 3H). 1.11 (s. 3H). $0.91(\mathrm{~m} .9 \mathrm{H}) .0 .57(\mathrm{~m} .6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$. ppm) 202.4, 200.0. 172.5. 170.7. 169.8, 167.7, 140.5, 136.3. 134.9. 134.4, 134.3, 130.7. 130.1, 129.9. 129.7. 129.3.
$129.2,129.0,84.8,81.7,79.4,77.9,75.7,75.4 .73 .0 .71 .8$. 59.2, 57.4. 47.6. 43.7. 37.9. 36.3, 27.2, 23.4. 21.5, 21.3. 14.6 10.6.7.4. 5.9.

Preparation of compounds $\mathbf{3 a}$ and $\mathbf{3 b}$. To a pyridine solution (1 mL) of $9 \mathbf{a}$ or $9 \mathrm{~b}(20 \mathrm{mg}, 0.021 \mathrm{mmol})$ was added HF-Pyridine $(50 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 4 h . the reaction mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$ and washed first with a saturated solution of $\mathrm{CuSO}_{4}(2 \times 50 \mathrm{~mL})$ and then brine $(50 \mathrm{~mL})$. The organic layer was dried and concentrated in vocto. The residue was chromatographed (1:I ethyl acetatehexane) to give desired product ($15.5 \mathrm{mg}, 0.018 \mathrm{mmol}, 88 \%$).

3a: m.p. $153-156{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$. ppm) $8.07(\mathrm{~d}, J=7.20 \mathrm{~Hz} .2 \mathrm{H}) .7 .90(\mathrm{~d} . J=7.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-$ $7.63(\mathrm{~m}, 1 \mathrm{H}) .7 .49-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.4(\mathrm{~m}, 7 \mathrm{H}), 6.32(\mathrm{~s}$. $1 \mathrm{H}) .6 .08(\mathrm{~m} .1 \mathrm{H}), 5.63(\mathrm{~d} . J=6.96 \mathrm{~Hz}, \mathrm{lH}) .5 .29(\mathrm{~s} . \mathrm{OH})$. 5.21 (d. $J=5.19 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d. $J=8.88 \mathrm{~Hz}, 1 \mathrm{H}) .4 .69$ (dd. $J=8.37 .4 .78 \mathrm{~Hz}, \mathrm{lH}) .4 .47(\mathrm{~m} . \mathrm{H} \mathrm{H}), 4.27(\mathrm{~d}, J=8.40$ $\mathrm{Hz} .1 \mathrm{H}), 4.13(\mathrm{~d} . J=8.21 \mathrm{~Hz} . \mathrm{IH}) .3 .90(\mathrm{~d}, J=9.23 . \mathrm{OH})$, $3.81(\mathrm{~d} . J=5.74 \mathrm{~Hz}, \mathrm{IH}) .2 .53(\mathrm{~m}, 1 \mathrm{H}) .2 .32(\mathrm{~s} .3 \mathrm{H}) .2 .27-$ $2.35(\mathrm{~m} .1 \mathrm{H}) .2 .24(\mathrm{~s}, 3 \mathrm{H}) .2 .05(\mathrm{~s}, 3 \mathrm{H}) .1 .9 \mathrm{I}(\mathrm{m} .1 \mathrm{H}) .1 .66$ $(\mathrm{s}, 3 \mathrm{H}), 1.21(\mathrm{~s} .3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}. ppm) 204.5, 200.8. 173.6. 171.9. 171.0, 167.7. $141.6,136.2,135.5 .134 .52 .134 .48,133.3 .130 .8,130.0$. $129.9,129.8$. $129.4,129.3$. 128.9, 85.1, 81.4, 80.0. 77.9. $77.0,76.3 .75 .7,75.5 .72 .8,71.7 .59 .2,57.6 .46 .3 .43 .7 .36 .2$, 36.1, 30.4, 27.4, 22.9. 22.5. 21.5. 15.8 10.2: HRMS m/z calcd for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{O}_{14}+\mathrm{H} 839.3279$, obsd 839.3290 .
3b: m.p. $157-160^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $8.07(\mathrm{~d}, J=7.23 \mathrm{~Hz} .2 \mathrm{H}) .7 .93$ (d. $J=7.35 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-$ $7.65(\mathrm{~m} .1 \mathrm{H}) .7 .47-7.54(\mathrm{~m}, 3 \mathrm{H}) .7 .29-7.42(\mathrm{~m}, 7 \mathrm{H}) .6 .17(\mathrm{~s}$. 1H). $6.03(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=6.93 \mathrm{~Hz}, 1 \mathrm{H}) .5 .15(\mathrm{~d} . J=$ $6.42 \mathrm{~Hz} .1 \mathrm{H}), 4.97(\mathrm{~d} . J=8.07 \mathrm{~Hz} . \mathrm{lH}), 4.78(\mathrm{~m} . \mathrm{lH}), 4.37$ $(\mathrm{m}, \mathrm{lH}) .4 .31(\mathrm{~d} . J=8.07 \mathrm{~Hz}, \mathrm{IH}) .4 .16(\mathrm{~d}, J=8.34 \mathrm{~Hz} .1 \mathrm{H})$, 3.75 (d. $J=7.02 \mathrm{~Hz} .1 \mathrm{H}) .3 .74(\mathrm{~d}, J=8.49 \mathrm{~Hz}, \mathrm{OH}), 2.55$ $(\mathrm{m}, 1 \mathrm{H}), 2.42(\mathrm{~s} .3 \mathrm{H}), 2.31-2.42(\mathrm{~m}, 2 \mathrm{H}) .2 .22(\mathrm{~s}, 3 \mathrm{H}) .2 .17$ $(\mathrm{s}, 3 \mathrm{H}), 1.88(\mathrm{~m}, \mathrm{H}) .1 .66(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s} .3 \mathrm{H})$: ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$. ppm) 202.4. 200.0. 172.5. 171.9. 170.8. 167.7. 142.8. 136.2. 134.9. 134.5. 134.48. 134.0 .130 .7 .130 .2 . 129.8. 129.7, 129.4, 129.1, 85.1. 81.7. 79.8. 77.9. 77.1. 76.3. 75.5. 75.1. 72.9. 71.9. 59.3. 57.6.46.4. 43.7. 36.6. 36.3. 27.4. 23.4. 22.2. 21.5. 15.2. 10.2. HRMS m / z calcd for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{O}_{14}+\mathrm{H} 839.3279$. obsd 839.3289 .

Acknowledgement. This work was supported by the Korea Research Foundation (1999-015-DP0220).

References

1. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P; Mepail, A. T. J. Am. Chem. Soc 1971, 93.2325.
2. (a) Nicolaou, K. C.; Yang. J.-J.: Liu. H.: Ueno, P. G.; Nantermet, P. G.: Guy. R. K.: Claiborne. C. F.: Renaud. T.: Couladouros. E. A.: Paulvantann. K: Sorensent. E. T. Vature 1994. 367. 630. (b) Holton. R. A.: Somoza. C.: Kim. H.-B.: Liang. F.: Biediger. R. J.: Boatman. P. D.: Shindo, M; Smith, C. C.; Kim, S.; Nadizadeh. H.: Suzuki, Y.: Tao. C.: Vu, P.: Tang, S.: Zhang. P;' Murthi. K. K.; Gentile. L. N.: Liu, J. H. J. Am. Chem. Soc. 1994, 116. 1597. (c)

Danishetsky, S. J.: Masters, J. J.: Young, W. B.; Link, J. T; Snyder. L. B.: Magee, T. V: Jung. D. K:: Issacs. R. C. A.: Bormmann. W. G.: Alaimo. C. A.: Coburn. C. A.: Di Grandi. M. J. J. Am. (them. Soc. 1996. 118. 2843. (d) Wender. P. A.: Badham. N. F: Conway. S. P.: Floreancig. P. E.: Glass. T. E.: Holze, J. B.: Krauss, N. E.: Lee, D.: Marquess. D. G.; McGrane. P. L.' Meng. W.: Natehus, M. G.: Shuker A. J. Sutton. I. C.: Tavlor, R. E. J. Am. Chem. Soc. 1997. 19. 2757. (e) Shiina. I.: Saitoh. K: Frechard-Ortuno. I.: Mukaiyama. T. Chem. Lett. 1998. 3. (t) Morihara. K.: Hara. R.: Kawahara. S.: Nishimori. T.: Nakamura. N.: Kusama. H.: Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980. (g) Kim. S.-C.: Moon. M.-S.: Choi, K.-M.: Jun. S.-T.: Kim. H.-K.; Jung, D.-I.: Lee. K.-S.; Chai, K.-B. Bull. Korean Chem. Soc. 1998. 19. 1027. (h) Lee. J. H.: Gi. U.-S.: Kim. J.-H.: Kim. Y: Kim. S.-H.: Oh. H.: Min. B. Bull. Korean Chem. Soc. 2001.22. 925.
3. (a) Taxame Acticancer Agents: Basic Science and Cwment Status. Georg. G. I.. Chen. T. T.. Ojima, I., Vyas, D. M., Eds.: American Chemical Society: Washington. DC. 1995; ACS Symposilun Series 538. (b) Taxol: Science and Applications: Suffness. M. Ed.: CRC: Boca Raton. FL. 1995.
4. Dai. W.-M.: Schiti. P. B.: Fant. J.: Honvitz. S. B. Nanme 1979. 237.665.
5. Rowinsky, E. K. Amm. Ren. Med. 1997. 48. 353.
6. Mattew. A. E.: Mejillano, M. R.; Nath. J. P.: Himes, R. H.; Stella. V. T. J. Med Chent 1992. 35. 145.
7. (a) Ojima. I.: Litn. S.: Wang. T. Curr Med. Chem. 1999. 6.519. (b) Kant. J. In The Chemisty and Phamacology of Pachaxel. Farina, V. Ed.: Elsevier: Amsterdam, 1995: p 255. (c) Georg. G. I; Boge. T. C.; Cheruvallath. Z. S.; Clower, J. S.; Harriman. G. C. B.; Hepperle. M.: Park. H. In Taxol. Sicence and Application: Suttiness. M.. Ed.: CRC: Boca Raton. FL. 1995: pp 317-375.
8. (a) Guénard. D.: Guéritte-Voelegein. F.: Potier. P. Acc. Chen. Res. 1993. 26. 160. (b) Kanazawa. A. M.: Denis. T.-N.: Greene. A. E. J. Org Chem. 1994, 59. 1238.
9. (a) Bissery, M. C.; Guénard. D.: Guéritte-Voelegein, F.: Lavalle. F. Cancer Res. 1991. 51, 4845. (b) Rose. W. C. In Taxol: Sicence and Application: Sutfiness. M. Ed.: CRC: Boca Raton. FL. 1995: pp 209-235.
10. (a) Lee. D.: Kim. M.-J. Tetrahedron Lett. 1998. 39. 2163. (b) Lee. D.; Kim. K.-C.; Kim, M.J. Tetraedron Lett. 1998, 39, 9039. (c) Lee. D.: Kim, M.J. Org Lett. 1999, 1. 925.
11. Shuji, K.: Masaki. N.; Eiji, W. Tetrahedhon Letf. 1992, 10. 1357.
12. Denis. J. N.: Green1. A. E.: Serra. A. A.: Luthe. M. J. J. Org. Chen. 1986. 51.46
13. Denis. J.-N.: Greene. A.: Guénard. D.: Guéritte-Voelegein. F.: Mangatal, L.: Potier. P. J. Am. Chem. Soc. 1988, 110, 5917.
14. Curran. D. P. J. Am. Chem. Soc. 1983. 105,5862.

