DOI QR코드

DOI QR Code

Patterning Biological Molecules onto Poly(amidoamine) Dendrimer on Gold and Glass

  • Hong, Mi-Young (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Lee, Do-Hoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Yoon, Hyun C. (Division of Chemical Engineering and Biotechnology, Ajou University) ;
  • Kim, Hak-Sung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Published : 2003.08.20

Abstract

Patterning of biological molecules was attempted on both gold and glass using fourth generation (G4) poly(amidoamine) (PAMAM) dendrimer as an interfacing layer between solid surfaces and biomolecules. As for the patterning of avidin and anti-biotin antibody on gold, PAMAM dendrimers representing amine functionalities were firstly printed onto the 11-mercaptoundecanoic acid SAM by microcontact printing, followed by biotinylation, and reacted with fluorescence-labeled avidin or anti-biotin antibody. Fluorescence microscopic analysis revealed that the patterns of avidin and anti-biotin antibody were well constructed with the resolution of < 2 ㎛. The PAMAM dendrimers were also printed onto aldehyde-activated slide glass and reacted directly with anti-BSA antibodies, which had been oxidized with sodium periodate. As a result, distinct patterns of the anti-BSA antibodies were also obtained with a comparable edge resolution to that of avidin patterns on gold. These results clearly show that PAMAM dendrimers can be adopted as an interfacing layer for the patterning of biological molecules on solid surfaces with micrometer resolution.

Keywords

References

  1. Blawas, A. S.; Reichert, W. M. Biomaterials 1998, 19, 595. https://doi.org/10.1016/S0142-9612(97)00218-4
  2. Kane, R. S.; Takayama, S.; Ostuni, E.; Ingber, D. E.; Whitesides,G. M. Biomaterials 1999, 20, 2363. https://doi.org/10.1016/S0142-9612(99)00165-9
  3. Mrksich, M.; Whitesides, G. M. Trends Biotechnol. 1995, 13, 228. https://doi.org/10.1016/S0167-7799(00)88950-7
  4. Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber,D. E. Biotechnol. Prog. 1998, 14, 356. https://doi.org/10.1021/bp980031m
  5. Yousaf, M. N.; Houseman, B. T.; Mrksich, M. Proc. Natl. Acad.Sci. USA 2001, 98, 5992. https://doi.org/10.1073/pnas.101112898
  6. Quan, D.; Kim, Y.; Yoon, K. B.; Shin, W. Bull. Korean Chem. Soc.2002, 23, 385. https://doi.org/10.1007/BF02706739
  7. Mooney, J. F.; Hunt, A. J.; McIntosh, J. R.; Liberko, C. A.; Walba,D. M.; Rogers, C. T. Proc. Natl. Acad. Sci. USA 1996, 93, 12287. https://doi.org/10.1073/pnas.93.22.12287
  8. Vaidya, R.; Tender, L. M.; Bradley, G.; OBrien II, M. J.; Cone, M.;López, G. P. Biotechnol. Prog. 1998, 14, 371. https://doi.org/10.1021/bp980039w
  9. Brooks, S. A.; Ambrose, W. P.; Kuhr, W. G. Anal. Chem. 1999, 71,2558. https://doi.org/10.1021/ac9814546
  10. Yang, Z.; Frey, W.; Oliver, T.; Chilkoti, A. Langmuir 2000, 16,1751. https://doi.org/10.1021/la9908079
  11. Lahiri, J.; Ostuni, E.; Whitesides, G. M. Langmuir 1999, 15,2055. https://doi.org/10.1021/la9811970
  12. Wilner, I.; Schlittner, A.; Doron, A.; Joselevich, E. Langmuir1999, 15, 2766. https://doi.org/10.1021/la981018e
  13. Kung, L. A.; Kam, L.; Hovis, J. S.; Boxer, S. G. Langmuir 2000,16, 6773. https://doi.org/10.1021/la000653t
  14. Inglis, W.; Sanders, H. W.; Williams, P. M.; Davies, M. C.;Roberts, C. J.; Tendler, S. J. B. Langmuir 2001, 17, 7402. https://doi.org/10.1021/la010511e
  15. Lee, K.-B.; Kim, Y.; Choi, I. S. Bull. Korean Chem. Soc. 2003, 24,161. https://doi.org/10.5012/bkcs.2003.24.2.161
  16. Kumar, A.; Abbott, N. L.; Kim, E.; Biebuyck, H. A.; Whitesides,G. M. Acc. Chem. Res. 1995, 28, 219. https://doi.org/10.1021/ar00053a003
  17. Frey, B. L.; Corn, R. M. Anal. Chem. 1996, 68, 3187. https://doi.org/10.1021/ac9605861
  18. Franchina, J. G.; Lackowski, W. M.; Dermody, D. L.; Crooks, R.M.; Bergbreiter, D. E. Anal. Chem. 1999, 71, 3133. https://doi.org/10.1021/ac981300q
  19. Yan, L.; Huck, W. T. S.; Zhao, X.-M.; Whitesides, G. M.Langmuir 1999, 15, 1208. https://doi.org/10.1021/la980818m
  20. Ruiz-Taylor, L. A.; Martin, T. L.; Zaugg, F. G.; Witte, K.;Indermuhle, P.; Nock, S.; Wagner, P. Proc. Natl. Acad. Sci. USA2001, 98, 852. https://doi.org/10.1073/pnas.98.3.852
  21. Fischer, M.; Vögtle, F. Angew. Chem. Int. Ed. 1999, 38, 884. https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<884::AID-ANIE884>3.0.CO;2-K
  22. Tully, D. C.; Frechet, J. M. J. Chem. Commun. 2001, 1229.
  23. Regen, S. L.; Watanabe, S. J. Am. Chem. Soc. 1994, 116, 8855. https://doi.org/10.1021/ja00098a074
  24. Tsukruk, V. V.; Rinderspacher, F.; Bliznyuk, V. Langmuir 1997,13, 2171. https://doi.org/10.1021/la960603h
  25. Wells, M.; Crooks, R. M. J. Am. Chem. Soc. 1996, 118, 3988. https://doi.org/10.1021/ja960097i
  26. Crooks, R.; Ricco, A. J. Acc. Chem. Res. 1998, 31, 219. https://doi.org/10.1021/ar970246h
  27. Cuadrado, I.; Moran, M.; Casado, C. M.; Alonso, B.; Lobete, F.;Garcia, B.; Ibisate, M.; Losada, J. Organometallics 1996, 15,5278. https://doi.org/10.1021/om9605948
  28. Takada, K.; Diaz, D. J.; Abruna, H. D.; Cuadrado, I.; Casado, C.;Alonso, B.; Moran, M.; Losada, J. J. Am. Chem. Soc. 1997, 119,10763. https://doi.org/10.1021/ja9716315
  29. Tabakovic, I.; Miller, L. L.; Duan, R. G.; Tully, D. C.; Tomalia, D.A. Chem. Mater. 1997, 9, 736. https://doi.org/10.1021/cm960431+
  30. Valerio, C.; Fillaut, J.-L.; Ruiz, J.; Guittard, J.; Blais, J.-C.; Astruc,D. J. Am. Chem. Soc. 1997, 119, 2588. https://doi.org/10.1021/ja964127t
  31. Wilbur, D. S.; Pathare, P. M.; Hamlin, D. K.; Buhler, K. R.;Vessella, R. L. Bioconjugate Chem. 1998, 9, 813. https://doi.org/10.1021/bc980055e
  32. Singh, P. Bioconjugate Chem. 1998, 9, 54. https://doi.org/10.1021/bc970048a
  33. Anzai, J.-I.; Kobayashi, Y.; Nakamura, N.; Nishimura, M.; Hoshi,T. Langmuir 1999, 15, 221. https://doi.org/10.1021/la980743m
  34. Yoon, H. C.; Hong, M.-Y.; Kim, H.-S. Anal. Chem. 2000, 72,4420. https://doi.org/10.1021/ac0003044
  35. Yoon, H. C.; Kim, H.-S. Anal. Chem. 2000, 72, 922. https://doi.org/10.1021/ac991299a
  36. Li, H.; Kang, D.-J.; Blamire, M. G.; Huck, W. T. S. Nano Lett.2002, 2, 347. https://doi.org/10.1021/nl025503c
  37. Benters, R.; Niemeyer, C. M.; Wöhrle, D. Chem. Biol. Chem.2001, 2, 686. https://doi.org/10.1002/1439-7633(20010903)2:9<686::AID-CBIC686>3.0.CO;2-S
  38. Benters, R.; Niemeyer, C. M.; Drutschmann, D.; Blohm, D.;Wöhrle, D. Nucleic Acids Res. 2002, 30, e10. https://doi.org/10.1093/nar/30.2.e10
  39. Yoon, H. C.; Hong, M.-Y.; Kim, H.-S. Anal. Biochem. 2000, 282,121. https://doi.org/10.1006/abio.2000.4608
  40. Yoon, H. C.; Hong, M.-Y.; Kim, H.-S. Langmuir 2001, 17, 1234. https://doi.org/10.1021/la001373g
  41. Yoon, H. C.; Lee, D.; Kim, H.-S. Anal. Chim. Acta 2002, 456,209. https://doi.org/10.1016/S0003-2670(02)00032-6
  42. Jung, L. S.; Nelson, K. E.; Stayton, P. S.; Campbell, C. T.Langmuir 2000, 16, 9421. https://doi.org/10.1021/la000144r
  43. Harlow, E.; Lane, D. Using Antibodies: A Laboratory Manual;Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NewYork, U. S. A., 1999; p 85.
  44. Hermanson, G. T. Bioconjugate Techniques; Academic Press: SanDiego, California, U. S. A., 1996; p 475.
  45. Lynch, N. J.; Kilpatrick, P. K.; Carbonell, R. G. Biotechnol.Bioeng. 1996, 50, 169. https://doi.org/10.1002/(SICI)1097-0290(19960420)50:2<169::AID-BIT6>3.0.CO;2-K
  46. Hong, M.-Y.; Yoon, H. C.; Kim, H.-S. Langmuir 2003, 19, 416. https://doi.org/10.1021/la020431q
  47. Knoll, W.; Liley, M.; Piscevic, D.; Spinke, J.; Tarlov, M. J. Adv.Biophys. 1997, 34, 231. https://doi.org/10.1016/S0065-227X(97)89642-6

Cited by

  1. Dendrimers in biosensors: Concept and applications vol.21, pp.38, 2011, https://doi.org/10.1039/c1jm10527b
  2. Aminated dendritic surfaces characterization: a rapid and versatile colorimetric assay for estimating the amine density and coating stability vol.399, pp.6, 2011, https://doi.org/10.1007/s00216-010-4612-9
  3. Mutagenicity Survey and Antibacterial Activity of Various Generations of Poly (Amid Amine) (PAMAM) Dendrimers and Algonac Acid Poly (Amid Amine) (PAMAM) Dendrimer Nano Composite G2 on Some Enteric Pathogenic Bacteria vol.2, pp.4, 2014, https://doi.org/10.17795/ijep20012
  4. Biofunctional Materials Based on Amino Cellulose Derivatives - A Nanobiotechnological Concept vol.16, pp.1, 2015, https://doi.org/10.1002/mabi.201500184
  5. Bioelectrocatalyzed signal amplification for affinity interactions at chemically modified electrodes vol.9, pp.2, 2004, https://doi.org/10.1007/BF02932992
  6. Spatial Control over Chemical Functionalization of Biodegradable Poly(glycolic acid) (PGA) Sutures: Bulk vs. Surface Functionalization vol.24, pp.11, 2003, https://doi.org/10.5012/bkcs.2003.24.11.1702
  7. (Bio)functional surface structural design of substrate materials based on self-assembled monolayers from aminocellulose derivatives and amino(organo)polysiloxanes vol.515, pp.17, 2003, https://doi.org/10.1016/j.tsf.2007.02.071