DOI QR코드

DOI QR Code

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon (Chemical Sensor Group, Department of Chemistry, Kwangwoon University) ;
  • Cha, Geun-Sig (Chemical Sensor Group, Department of Chemistry, Kwangwoon University) ;
  • Nam, Hak-hyun (Chemical Sensor Group, Department of Chemistry, Kwangwoon University)
  • Published : 2003.01.20

Abstract

We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

Keywords

References

  1. Light, T. S. J. Chem. Edu. 1997, 74, 171. https://doi.org/10.1021/ed074p171
  2. Young, C. C. J. Chem. Edu. 1997, 74, 177. https://doi.org/10.1021/ed074p177
  3. Espadas-Torre, C.; Bakker, E.; Barker, S.; Meyerhoff, M. E. Anal.Chem. 1996, 68, 1623. https://doi.org/10.1021/ac951017g
  4. Birch, B. J.; Cockcroft, R. N. Ion-Sel. Electrode Rev. 1981, 3, 1.
  5. Szczepaniak, W.; Ren, M. Electroanalysis 1994, 6, 341. https://doi.org/10.1002/elan.1140060412
  6. Llenado, R. Anal. Chem. 1975, 47, 2243. https://doi.org/10.1021/ac60363a013
  7. Hulanicki, A.; Trojanowicz, M.; Pobozny, E. Analyst 1982, 107,1356. https://doi.org/10.1039/an9820701356
  8. Craggs, A.; Moody, G. J.; Thomas, J. D. R.; Birch, B. J. Analyst1980, 105, 426. https://doi.org/10.1039/an9800500426
  9. Malinowska, M.; Meyerhoff, M. E. Anal. Chem. 1998, 70, 1477. https://doi.org/10.1021/ac970761t
  10. IUPAC Recommandation for Nomenclature of Ion-Selective Electrodes. Pure Appl. Chem. 1994, 66, 2527. https://doi.org/10.1351/pac199466122527
  11. IUPAC SelectivityCoefficients for Ion-Selective Electrodes: Recommanded Methodsfor reporting K values. Pure Appl. Chem. 1995, 67, 507. https://doi.org/10.1351/pac199567030507
  12. Kikuchi, Y.; Takahashi, N.; Suzuki, T.; Sawada, K. Anal Chem.1992, 256, 311.
  13. Bakker, E.; Willer, M.; Lerchi, M.; Seiler, K.; Pretsch, E. Anal.Chem. 1994, 66, 516. https://doi.org/10.1021/ac00076a016
  14. Oesch, U.; Ammann, D.; Simon, W. Clin. Chem. 1986, 32, 1448.

Cited by

  1. Multi-ion sensing of buffer solutions using terahertz chemical microscopy vol.7, pp.12, 2014, https://doi.org/10.7567/APEX.7.122401
  2. Influence of ionic and nonionic surfactants on analytical parameters of ion-selective electrodes based on chelating active substances vol.51, pp.11, 2003, https://doi.org/10.1016/j.electacta.2005.05.069
  3. Comparative study of Ag(I) selective poly(vinyl chloride) membrane sensors based on newly developed Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6 vol.631, pp.2, 2003, https://doi.org/10.1016/j.aca.2008.10.033
  4. Click-immobilized K+-selective ionophore for potentiometric and optical sensors vol.171, pp.None, 2003, https://doi.org/10.1016/j.snb.2012.05.033
  5. Development of a multiple-bile-ion-sensing membrane electrode vol.441, pp.2, 2003, https://doi.org/10.1016/j.ab.2013.06.022